A dynamic model is presented for a chiller working with a composite adsorbent(silica activated carbon/CaCl2)–water pair in a solar-biomass cooling installation.The main objective is determining a link between two pos...A dynamic model is presented for a chiller working with a composite adsorbent(silica activated carbon/CaCl2)–water pair in a solar-biomass cooling installation.The main objective is determining a link between two possible evaporator configurations and the refrigerator’s performances.The two considered evaporators work at different pressure levels.The related time evolution profiles of temperature,pressure and water content are studied.Moreover,the effects of hot water inlet temperature and cooling water inlet temperature on the specific cooling capacity(SCP)and coefficient of performance(COP)are predicted by means of numerical simulations.The results show that an increase in the temperature of hot water and a decrease in the temperature of the cooling water allow an increase in COP and SCP.In particular,for a hot water inlet temperature of 85°C and a cooling water inlet temperature of 40°C,the COP and Qev are 0.67 and 4.3 kW,respectively.展开更多
Thermal adsorption cooling systems have gained significant attention due to their potential for energy savings and eco-environmental impact. An analytic investigation of the heat transfer inside an adsorption chiller ...Thermal adsorption cooling systems have gained significant attention due to their potential for energy savings and eco-environmental impact. An analytic investigation of the heat transfer inside an adsorption chiller with various bed silica gel-water pairs is presented. A comprehensive model has been designed to accurately predict the correlation between the overall performance of the proposed chiller system and the functional and structural condition of the building. This model takes into account various factors such as temperature, humidity, and air quality to provide a detailed analysis of the system’s efficiency. At least 20 collectors consisting of a 34.4 m area (each) with a full-cycle time of 480 seconds are essential to improper run conditions. It is necessary to adjust the optimum cycle time for optimal performance. During the investigation, the base condition shows that the cooling capacity is 14 kw, 0.6 COPcycle, and 0.35 COPsolar at noon. Also, conduct a thorough investigation into the chiller’s performance under varying cooling water supply temperatures and various chilled water flow rates.展开更多
Large amounts of waste heat below 100oC from the industrial sector are re-leased into the atmosphere. It has been suggested that energy system efficiency can be increased with adsorption chillers. However, the cooling...Large amounts of waste heat below 100oC from the industrial sector are re-leased into the atmosphere. It has been suggested that energy system efficiency can be increased with adsorption chillers. However, the cooling power and coefficient of performance (COP) of conventional adsorption chillers significantly decrease with the desorption temperature. In this paper, we proposed a mechanical booster pump (MBP)-assisted adsorption chiller cycle, and evaluated its performances. In the cycle, a MBP was incorporated into a zeolite-water-type adsorption chiller for facilitating water vapor transportation between an adsorber and an evaporator/condenser. We have experimentally studied the effect of the input electrical power of MBP on the performances of adsorption chiller cycle. It has been demonstrated that the heat input achieved by using MBP at the desorption temperature of 50oC was 1.6 times higher than that of without MBP at the desorption temperature of 60oC. And the increase of pump power was found to be effective in increasing the heat input. Therefore, it was confirmed that the operation range of desorption temperature, which can be generated by using the waste heat, was extended and the cooling power was increased directly by using MBP.展开更多
Here, we propose a double-effect adsorption chiller with a zeolite adsorbent (FAM-Z01) for utilization of waste heat. The FAM-Z01 adsorbent has the potential to recover waste heat in low temperatures ranging from 353 ...Here, we propose a double-effect adsorption chiller with a zeolite adsorbent (FAM-Z01) for utilization of waste heat. The FAM-Z01 adsorbent has the potential to recover waste heat in low temperatures ranging from 353 to 333 K and shows good potential in the adsorption chiller in terms of the high cooling output. A double-effect adsorption chiller could provide a higher Coefficient Of Performance (COP) than that of a single-effect chiller. In this paper, we developed a measuring method for the amount of adsorption in the first and second adsorber in a double-effect adsorption chiller and measured the adsorption and desorption rate based on the volumetric method. We calculated the COP of the adsorption chiller with the quantity of adsorbent obtained in the experiment. In the experiments, the quantity of adsorbent in the first adsorber was 0.14 g-H<sub>2</sub>O/g-Ads at the pressure 20 kPa and a desorption temperature over 100℃. The amount of adsorbent in the second adsorber was equal to that of the first adsorber. By analyzing the COP with the experimental results, the COP value was calculated to be over 1.0 (–) at any desorption temperature. The COP of the double-effect cycle was higher than that of single-effect cycle.展开更多
Ecological adsorption technology is becoming a focus of attention by industry due to the utilization of low grade thermal energy sources for cooling production. It can be a promising part of sustainable development co...Ecological adsorption technology is becoming a focus of attention by industry due to the utilization of low grade thermal energy sources for cooling production. It can be a promising part of sustainable development concept of the global economy. Therefore, research aiming at improving their performance i.e. Coefficient of Performance(COP) by optimizing the construction of sorption beds with a built in heat exchanger system is crucial. The heat transfer characteristics between the bed of porous media(sorbent) and surface of the heat exchanger system determine the heating power of an adsorption chiller. The HP increase can be obtained by heat transfer intensification due to the increase in the thermal conductivity of the sorbent layer in the vicinity of the heat exchanger's surface. The novel modification of the sorbent layer structure is proposed in the paper in order to improve the heat transfer processes in the heat exchanger boundary layer. The analysis of desorption process conditions in the parametric model of a coated and fixed adsorption bed design is presented in the paper. The computational fluid dynamics(CFD) with conjugate heat transfer analysis is used to determine the crucial input parameters(temperature distribution in the sorbent bed) for further analytical calculations. The commercial code Ansys Fluent was used to perform numerical simulations. The developed computational model consisted of three subdomains representing heating water, heat exchanger material(copper) and sorbent(silica gel). The comparison of a novel coated design and a conventional fixed bed is discussed in the paper. The numerical analysis is based on experimental thermal conductivity measurements of the sorbent layer in different configurations, which were performed using Laser Flash Method.展开更多
This paper describes a new micro-combined cooling, heating and power (CCHP) system, which is especially suitable for domestic and light commercial applications. It mainly consists of a natural gas-fired internal com...This paper describes a new micro-combined cooling, heating and power (CCHP) system, which is especially suitable for domestic and light commercial applications. It mainly consists of a natural gas-fired internal combustion engine, a silica gel-water adsorption chiller and other heat recovery units. In order to study the energy efficiency and economic feasibility, an experimental investigation has been carried out. The experimental system has a rated electricity power of 12 kW, a rated cooling capacity of 9 kW and a rated heating capacity of 28 kW. Evaluation and analysis of the system are discussed in detail. The testing results show that the energy efficiency of the overall system depends on different modes. The overall thermal and electrical efficiency is over 70%. Higher heat load supplied causes higher efficiency of the system. Economic evaluation shows that the micro-CCHP system enjoys a small capital cost and short payback period, which is easily accepted by customers. At current natural gas price of 1.9 RMB/m^3 (nominal condition) and electric price of 0.754 RMB/(kW.h), the total capital cost is only 90 000 RMB with a payback period of 3.21 years.展开更多
According to the typical variable heat source of solar energy and the unsteady adsorption process of adsorption chiller,the research of cyclic transient characteristics of the solar-powered adsorption cooling system i...According to the typical variable heat source of solar energy and the unsteady adsorption process of adsorption chiller,the research of cyclic transient characteristics of the solar-powered adsorption cooling system is presented in this work.A mathematic model of the whole system including the model of adsorption chiller,which reveals the transient operation process of the solar-powered adsorption cooling system,is developed and verified by experimental data.On the basis of the simulated results,the transient characteristics and the overall performance of the system,not only in the traditional open cycle mode but also in closed cycle mode,are both analyzed theoretically.Furthermore,the influence of parameters matching of components configuration and operation process on the cyclic characteristics of the system,such as the solar collector area,the water tank capacity and the chiller startup temperature,are discussed.The research in this work may play a very important role in optimizing the system cyclic process and improving the system adaptability especially under the condition of variable heat source.展开更多
文摘A dynamic model is presented for a chiller working with a composite adsorbent(silica activated carbon/CaCl2)–water pair in a solar-biomass cooling installation.The main objective is determining a link between two possible evaporator configurations and the refrigerator’s performances.The two considered evaporators work at different pressure levels.The related time evolution profiles of temperature,pressure and water content are studied.Moreover,the effects of hot water inlet temperature and cooling water inlet temperature on the specific cooling capacity(SCP)and coefficient of performance(COP)are predicted by means of numerical simulations.The results show that an increase in the temperature of hot water and a decrease in the temperature of the cooling water allow an increase in COP and SCP.In particular,for a hot water inlet temperature of 85°C and a cooling water inlet temperature of 40°C,the COP and Qev are 0.67 and 4.3 kW,respectively.
文摘Thermal adsorption cooling systems have gained significant attention due to their potential for energy savings and eco-environmental impact. An analytic investigation of the heat transfer inside an adsorption chiller with various bed silica gel-water pairs is presented. A comprehensive model has been designed to accurately predict the correlation between the overall performance of the proposed chiller system and the functional and structural condition of the building. This model takes into account various factors such as temperature, humidity, and air quality to provide a detailed analysis of the system’s efficiency. At least 20 collectors consisting of a 34.4 m area (each) with a full-cycle time of 480 seconds are essential to improper run conditions. It is necessary to adjust the optimum cycle time for optimal performance. During the investigation, the base condition shows that the cooling capacity is 14 kw, 0.6 COPcycle, and 0.35 COPsolar at noon. Also, conduct a thorough investigation into the chiller’s performance under varying cooling water supply temperatures and various chilled water flow rates.
文摘Large amounts of waste heat below 100oC from the industrial sector are re-leased into the atmosphere. It has been suggested that energy system efficiency can be increased with adsorption chillers. However, the cooling power and coefficient of performance (COP) of conventional adsorption chillers significantly decrease with the desorption temperature. In this paper, we proposed a mechanical booster pump (MBP)-assisted adsorption chiller cycle, and evaluated its performances. In the cycle, a MBP was incorporated into a zeolite-water-type adsorption chiller for facilitating water vapor transportation between an adsorber and an evaporator/condenser. We have experimentally studied the effect of the input electrical power of MBP on the performances of adsorption chiller cycle. It has been demonstrated that the heat input achieved by using MBP at the desorption temperature of 50oC was 1.6 times higher than that of without MBP at the desorption temperature of 60oC. And the increase of pump power was found to be effective in increasing the heat input. Therefore, it was confirmed that the operation range of desorption temperature, which can be generated by using the waste heat, was extended and the cooling power was increased directly by using MBP.
文摘Here, we propose a double-effect adsorption chiller with a zeolite adsorbent (FAM-Z01) for utilization of waste heat. The FAM-Z01 adsorbent has the potential to recover waste heat in low temperatures ranging from 353 to 333 K and shows good potential in the adsorption chiller in terms of the high cooling output. A double-effect adsorption chiller could provide a higher Coefficient Of Performance (COP) than that of a single-effect chiller. In this paper, we developed a measuring method for the amount of adsorption in the first and second adsorber in a double-effect adsorption chiller and measured the adsorption and desorption rate based on the volumetric method. We calculated the COP of the adsorption chiller with the quantity of adsorbent obtained in the experiment. In the experiments, the quantity of adsorbent in the first adsorber was 0.14 g-H<sub>2</sub>O/g-Ads at the pressure 20 kPa and a desorption temperature over 100℃. The amount of adsorbent in the second adsorber was equal to that of the first adsorber. By analyzing the COP with the experimental results, the COP value was calculated to be over 1.0 (–) at any desorption temperature. The COP of the double-effect cycle was higher than that of single-effect cycle.
基金the project:"The development of innovative technology of adsorption chiller NETI?,using special,glued construction of the adsorption beds"(number:POIR.01.01.01-00-1659/15)partially supported by National Science Centre of Poland (Narodowe Centrum Nauki) grant number 2017/01/X/ST8/00019granted by the Faculty of Mathematics and Natural Sciences of Jan Dlugosz University in Czestochowa.
文摘Ecological adsorption technology is becoming a focus of attention by industry due to the utilization of low grade thermal energy sources for cooling production. It can be a promising part of sustainable development concept of the global economy. Therefore, research aiming at improving their performance i.e. Coefficient of Performance(COP) by optimizing the construction of sorption beds with a built in heat exchanger system is crucial. The heat transfer characteristics between the bed of porous media(sorbent) and surface of the heat exchanger system determine the heating power of an adsorption chiller. The HP increase can be obtained by heat transfer intensification due to the increase in the thermal conductivity of the sorbent layer in the vicinity of the heat exchanger's surface. The novel modification of the sorbent layer structure is proposed in the paper in order to improve the heat transfer processes in the heat exchanger boundary layer. The analysis of desorption process conditions in the parametric model of a coated and fixed adsorption bed design is presented in the paper. The computational fluid dynamics(CFD) with conjugate heat transfer analysis is used to determine the crucial input parameters(temperature distribution in the sorbent bed) for further analytical calculations. The commercial code Ansys Fluent was used to perform numerical simulations. The developed computational model consisted of three subdomains representing heating water, heat exchanger material(copper) and sorbent(silica gel). The comparison of a novel coated design and a conventional fixed bed is discussed in the paper. The numerical analysis is based on experimental thermal conductivity measurements of the sorbent layer in different configurations, which were performed using Laser Flash Method.
基金the State Key Fundamental Research Program (No. G2000026309)the National Science Fund for Distinguished Young Scholars of China (No. 50225621)the Research Fund for the Doctoral Program of Higher Education (No. 20040248055)
文摘This paper describes a new micro-combined cooling, heating and power (CCHP) system, which is especially suitable for domestic and light commercial applications. It mainly consists of a natural gas-fired internal combustion engine, a silica gel-water adsorption chiller and other heat recovery units. In order to study the energy efficiency and economic feasibility, an experimental investigation has been carried out. The experimental system has a rated electricity power of 12 kW, a rated cooling capacity of 9 kW and a rated heating capacity of 28 kW. Evaluation and analysis of the system are discussed in detail. The testing results show that the energy efficiency of the overall system depends on different modes. The overall thermal and electrical efficiency is over 70%. Higher heat load supplied causes higher efficiency of the system. Economic evaluation shows that the micro-CCHP system enjoys a small capital cost and short payback period, which is easily accepted by customers. At current natural gas price of 1.9 RMB/m^3 (nominal condition) and electric price of 0.754 RMB/(kW.h), the total capital cost is only 90 000 RMB with a payback period of 3.21 years.
基金Supported by the National Natural Science Foundation of China(Grant No.50676060)
文摘According to the typical variable heat source of solar energy and the unsteady adsorption process of adsorption chiller,the research of cyclic transient characteristics of the solar-powered adsorption cooling system is presented in this work.A mathematic model of the whole system including the model of adsorption chiller,which reveals the transient operation process of the solar-powered adsorption cooling system,is developed and verified by experimental data.On the basis of the simulated results,the transient characteristics and the overall performance of the system,not only in the traditional open cycle mode but also in closed cycle mode,are both analyzed theoretically.Furthermore,the influence of parameters matching of components configuration and operation process on the cyclic characteristics of the system,such as the solar collector area,the water tank capacity and the chiller startup temperature,are discussed.The research in this work may play a very important role in optimizing the system cyclic process and improving the system adaptability especially under the condition of variable heat source.