期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Accelerated Particle Swarm Optimization Algorithm for Efficient Cluster Head Selection in WSN
1
作者 Imtiaz Ahmad Tariq Hussain +3 位作者 Babar Shah Altaf Hussain Iqtidar Ali Farman Ali 《Computers, Materials & Continua》 SCIE EI 2024年第6期3585-3629,共45页
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe... Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks. 展开更多
关键词 Wireless sensor network cluster head selection low energy adaptive clustering hierarchy accelerated particle swarm optimization
下载PDF
Torque-based Optimal Acceleration Control for Electric Vehicle 被引量:1
2
作者 LU Dongbin OUYANG Minggao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期319-330,共12页
The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-f... The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control. 展开更多
关键词 permanent magnet synchronous motor(PMSM) field oriented control(FOC) efficiency model electric vehicle energy optimal acceleration
下载PDF
APPLICATION OF INTEGER CODING ACCELERATING GENETIC ALGORITHM IN RECTANGULAR CUTTING STOCK PROBLEM 被引量:3
3
作者 FANG Hui YIN Guofu LI Haiqing PENG Biyou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期335-339,共5页
An improved genetic algorithm and its application to resolve cutting stock problem arc presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SG... An improved genetic algorithm and its application to resolve cutting stock problem arc presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SGA is a serious problem in practical application. Accelerating genetic algorithm (AGA) based on integer coding and AGA's detailed steps are developed to reduce the amount of computation, and a new kind of rectangular parts blank layout algorithm is designed for rectangular cutting stock problem. SGA is adopted to produce individuals within given evolution process, and the variation interval of these individuals is taken as initial domain of the next optimization process, thus shrinks searching range intensively and accelerates the evaluation process of SGA. To enhance the diversity of population and to avoid the algorithm stagnates at local optimization result, fixed number of individuals are produced randomly and replace the same number of parents in every evaluation process. According to the computational experiment, it is observed that this improved GA converges much sooner than SGA, and is able to get the balance of good result and high efficiency in the process of optimization for rectangular cutting stock problem. 展开更多
关键词 Accelerating genetic algorithm Efficiency of optimization Cutting stock problem
下载PDF
Integrating Tabu Search in Particle Swarm Optimization for the Frequency Assignment Problem 被引量:1
4
作者 Houssem Eddine Hadji Malika Babes 《China Communications》 SCIE CSCD 2016年第3期137-155,共19页
In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency s... In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency spectrum. In order to satisfy the increasing demand in such cellular mobile networks, we use a hybrid approach consisting of a Particle Swarm Optimization(PSO) combined with a Tabu Search(TS) algorithm. This approach takes both advantages of PSO efficiency in global optimization and TS in avoiding the premature convergence that would lead PSO to stagnate in a local minimum. Moreover, we propose a new efficient, simple, and inexpensive model for storing and evaluating solution's assignment. The purpose of this model reduces the solution's storage volume as well as the computations required to evaluate thesesolutions in comparison with the classical model. Our simulation results on the most known benchmarking instances prove the effectiveness of our proposed algorithm in comparison with previous related works in terms of convergence rate, the number of iterations, the solution storage volume and the running time required to converge to the optimal solution. 展开更多
关键词 frequency assignment problem particle swarm optimization tabu search convergence acceleration
下载PDF
Distributed accelerated optimization algorithms:Insights from an ODE 被引量:4
5
作者 CHEN RuiJuan YANG Tao CHAI Tian You 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第9期1647-1655,共9页
In this paper, we consider the distributed optimization problem, where the goal is to minimize the global objective function formed by a sum of agents' local smooth and strongly convex objective functions, over un... In this paper, we consider the distributed optimization problem, where the goal is to minimize the global objective function formed by a sum of agents' local smooth and strongly convex objective functions, over undirected connected graphs. Several distributed accelerated algorithms have been proposed for solving such a problem in the existing literature. In this paper, we provide insights for understanding these existing distributed algorithms from an ordinary differential equation(ODE) point of view. More specifically, we first derive an equivalent second-order ODE, which is the exact limit of these existing algorithms by taking the small step-size. Moreover, focusing on the quadratic objective functions, we show that the solution of the resulting ODE exponentially converges to the unique global optimal solution. The theoretical results are validated and illustrated by numerical simulations. 展开更多
关键词 distributed accelerated optimization algorithms exponential convergence ordinary differential equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部