Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and qu...Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.展开更多
Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off...Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off,resulting in damage to the blades and causing eco-nomic losses.Therefore,it is necessary to analyze the friction between the blades and the coating.In this paper,three ceramic-based high-temperature seal coatings with different polyphenylene ester contents and a pure Yttria-stabilised zirconia coating were prepared by atmo-spheric plasma spraying(APS).The hardness and modulus of elasticity of the coated surfaces were obtained by hardness and modulus of elasticity tests,and the coatings were subjected to high-speed touch abrasion tests.The Hertzian contact model was used to calculate the maximum normal contact load on the coating during the process.The test values were compared with the theoretical values and it was found that the calculated values were always greater than the test values.In order to make the Hertzian contact model more accurate in calculating the touching and abrasion forces,the contact coefficients in the Hertzian contact model were optimized.Substituting the optimized coeffi-cients into the Hertzian contact model,the results show that the calculated results after optimizing the coefficients are much closer to the test values,with deviations from the test values ranging from 1%to 38%.展开更多
Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack...Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.展开更多
A new two-iteration sculling compensation mathematical framework is provided for modern-day strapdown inertial navigation system(SINS) algorithm design that utilizes a new concept in velocity updating. The principal...A new two-iteration sculling compensation mathematical framework is provided for modern-day strapdown inertial navigation system(SINS) algorithm design that utilizes a new concept in velocity updating. The principal structure of this framework includes twice sculling compensation procedure using incremental outputs from the inertial system sensors during the velocity updating interval. Then, the moderate algorithm is designed to update the velocity parameter. The analysis is conducted in the condition of sculling motion which indicates that the new mathematical framework error which is smaller than the conventional ones by at least two orders is far superior. Therefore, a summary is given for SINS software which can be designed with the new mathematical framework in velocity updating.展开更多
Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interest...Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interesting frequencies can be selected; and it is more suitable for wave propagation in viscoelastic media. The only obstacle to using the method is the requirement of huge computer storage. We extend the compressed format for storing the coefficient matrix. It can reduce the required computer storage dramatically. We get the optimal coefficients by least-squares method to suppress the numerical dispersion and adopt the perfectly matched layer (PML) boundary conditions to eliminate the artificial boundary reflections. Using larger grid intervals decreases computer storage requirements and provides high computational efficiency. Numerical experiments demonstrate that these means are economic and effective, providing a good basis for elastic wave imaging and inversion.展开更多
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome...Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.展开更多
In summary,the interval uncertainty is introduced to the acoustic metamaterial with Helmholtz resonators.And then,new descriptions(the conservative approximation,the unsafe approximation and the approximation precisio...In summary,the interval uncertainty is introduced to the acoustic metamaterial with Helmholtz resonators.And then,new descriptions(the conservative approximation,the unsafe approximation and the approximation precision)on uncertainties of physical properties of this interval acoustic metamaterial are defined.Lastly,an optimization model for this interval acoustic metamaterial is proposed.The organization of this paper is listed as follows.The acoustic transmission line method(ATLM)for an acoustic metamaterial with Helmholtz resonators is described in Section 2.In Section3,uncertain analysis of the interval acoustic metamaterial is presented.In Section 4,optimization model of the interval acoustic metamaterial is proposed.The discussion on optimization results is shown in Section 5.In section 6,some conclusions are given.展开更多
The paper studies Sard's problem on construction of optimal quadrature formulas in the space W_(2)^((m,0))by Sobolev's method.This problem consists of two parts:first calculating the norm of the error function...The paper studies Sard's problem on construction of optimal quadrature formulas in the space W_(2)^((m,0))by Sobolev's method.This problem consists of two parts:first calculating the norm of the error functional and then finding the minimum of this norm by coefficients of quadrature formulas.Here the norm of the error functional is calculated with the help of the extremal function.Then using the method of Lagrange multipliers the system of linear equations for coefficients of the optimal quadrature formulas in the space W_(2)^((m,0)) is obtained,moreover the existence and uniqueness of the solution of this system are discussed.Next,the discrete analogue D_(m)(hβ)of the differential operatord^(2m)/dx^(2m)-1 is constructed.Further,Sobolev's method of construction of optimal quadrature formulas in the space W_(2)^((m,0)),which based on the discrete analogue D_(m)(hβ),is described.Next,for m=1 and m=3 the optimal quadrature formulas which are exact to exponential-trigonometric functions are obtained.Finally,at the end of the paper the rate of convergence of the optimal quadrature formulas in the space W_(2)^((3,0))for the cases m=1 and m=3 are presented.展开更多
基金funded by the National Natural Science Foundation of China(No.42372331)the Henan Excellent Youth Science Fund Project(No.242300421145)the Colleges and Universities Youth and Innovation Science and Technology Support Plan of Shandong Province(No.2021KJ024).
文摘Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.
基金supported by Basic Research Funds for Central Universities(3122019189).
文摘Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off,resulting in damage to the blades and causing eco-nomic losses.Therefore,it is necessary to analyze the friction between the blades and the coating.In this paper,three ceramic-based high-temperature seal coatings with different polyphenylene ester contents and a pure Yttria-stabilised zirconia coating were prepared by atmo-spheric plasma spraying(APS).The hardness and modulus of elasticity of the coated surfaces were obtained by hardness and modulus of elasticity tests,and the coatings were subjected to high-speed touch abrasion tests.The Hertzian contact model was used to calculate the maximum normal contact load on the coating during the process.The test values were compared with the theoretical values and it was found that the calculated values were always greater than the test values.In order to make the Hertzian contact model more accurate in calculating the touching and abrasion forces,the contact coefficients in the Hertzian contact model were optimized.Substituting the optimized coeffi-cients into the Hertzian contact model,the results show that the calculated results after optimizing the coefficients are much closer to the test values,with deviations from the test values ranging from 1%to 38%.
文摘Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.
基金supported by the National Natural Science Foundation of China(90816027)the Aviation Science Funds(20135853037)+1 种基金the Foundation of China Aerospace Science & Industry Corporation(2013HTXGD2014HTXGD)
文摘A new two-iteration sculling compensation mathematical framework is provided for modern-day strapdown inertial navigation system(SINS) algorithm design that utilizes a new concept in velocity updating. The principal structure of this framework includes twice sculling compensation procedure using incremental outputs from the inertial system sensors during the velocity updating interval. Then, the moderate algorithm is designed to update the velocity parameter. The analysis is conducted in the condition of sculling motion which indicates that the new mathematical framework error which is smaller than the conventional ones by at least two orders is far superior. Therefore, a summary is given for SINS software which can be designed with the new mathematical framework in velocity updating.
基金supported by the 863 Program (Grant no.2006AA09Z323)the 973 Program (Grant No.2006CB202402)
文摘Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interesting frequencies can be selected; and it is more suitable for wave propagation in viscoelastic media. The only obstacle to using the method is the requirement of huge computer storage. We extend the compressed format for storing the coefficient matrix. It can reduce the required computer storage dramatically. We get the optimal coefficients by least-squares method to suppress the numerical dispersion and adopt the perfectly matched layer (PML) boundary conditions to eliminate the artificial boundary reflections. Using larger grid intervals decreases computer storage requirements and provides high computational efficiency. Numerical experiments demonstrate that these means are economic and effective, providing a good basis for elastic wave imaging and inversion.
基金the Open Fund(PLC201104)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)the National Natural Science Foundation of China(No.61072073)the Key Project of Education Commission of Sichuan Province(No.10ZA072)
文摘Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.
基金supported by National Natural Science Foundation of China(Grant Nos.11402083&11572121)Independent Research Project of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body in Hunan University(Grant No.51375002)Fundamental Research Funds for the Central Universities,Collaborative Innovation Center of Intelligent New Energy Vehicle,and the Hunan Collaborative Innovation Center of Green Automobile
文摘In summary,the interval uncertainty is introduced to the acoustic metamaterial with Helmholtz resonators.And then,new descriptions(the conservative approximation,the unsafe approximation and the approximation precision)on uncertainties of physical properties of this interval acoustic metamaterial are defined.Lastly,an optimization model for this interval acoustic metamaterial is proposed.The organization of this paper is listed as follows.The acoustic transmission line method(ATLM)for an acoustic metamaterial with Helmholtz resonators is described in Section 2.In Section3,uncertain analysis of the interval acoustic metamaterial is presented.In Section 4,optimization model of the interval acoustic metamaterial is proposed.The discussion on optimization results is shown in Section 5.In section 6,some conclusions are given.
基金supported by the “Korea Foundation for Advanced Studies”/“Chey Institute for Advanced Studies” International Scholar Exchange Fellowship for academic year of 2018–2019
文摘The paper studies Sard's problem on construction of optimal quadrature formulas in the space W_(2)^((m,0))by Sobolev's method.This problem consists of two parts:first calculating the norm of the error functional and then finding the minimum of this norm by coefficients of quadrature formulas.Here the norm of the error functional is calculated with the help of the extremal function.Then using the method of Lagrange multipliers the system of linear equations for coefficients of the optimal quadrature formulas in the space W_(2)^((m,0)) is obtained,moreover the existence and uniqueness of the solution of this system are discussed.Next,the discrete analogue D_(m)(hβ)of the differential operatord^(2m)/dx^(2m)-1 is constructed.Further,Sobolev's method of construction of optimal quadrature formulas in the space W_(2)^((m,0)),which based on the discrete analogue D_(m)(hβ),is described.Next,for m=1 and m=3 the optimal quadrature formulas which are exact to exponential-trigonometric functions are obtained.Finally,at the end of the paper the rate of convergence of the optimal quadrature formulas in the space W_(2)^((3,0))for the cases m=1 and m=3 are presented.