The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co...The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.展开更多
When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include ...When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include those systems with interdependent sensorobservations and any network structure. It is also valid for m-ary Bayesian decision problems andbinary problems under the Neyman-Pearson criterion. Local decision rules of a sensor withcommunication from other sensors that are optimal for the sensor itself are also presented, whichtake the form of a generalized likelihood ratio test. Numerical examples are given to reveal someinteresting phenomena that communication between sensors can improve performance of a senordecision, but cannot guarantee to improve the global fusion performance when sensor rules were givenbefore fusing.展开更多
Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In th...Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In this approach,the network is decomposed into several subsystems,each of which is under the supervision of a corresponding computing agent(controller,optimizer).The agents coordinate their control and optimization decisions based on information communication among them.In recent years,algorithms and methods for distributed control and optimization are undergoing rapid development.In this paper,we provide a comprehensive,up-to-date review with perspectives and discussions on possible future directions.展开更多
The optimization process of embedded, or DG (distributed generation) is a very complex task, and it should be evaluated and compared by means of multi-criteria methods of analysis. The classical method for selection...The optimization process of embedded, or DG (distributed generation) is a very complex task, and it should be evaluated and compared by means of multi-criteria methods of analysis. The classical method for selection is usually based only on a single criterion analysis, and it is defined by thermal or economic aspects. The problem of optimal dispatch of DG is typical example of optimization, because it differs from the classical problem of generation dispatch in the power system, due to the specific criteria related to the DG interconnection. The most important goals are to maximize the renewable production and to minimize the total cost, while satisfying additional constraints related to the operation of a distribution network. As there are many DGs in a distribution network, it is very complicated to decide the optimal DG outputs to satisfy all the criteria and constraints imposed by the distribution network. Another problem is the lack of the dispatcher control over DGs, and very often, the only available action is to switch on or off the generator. Finally, network operator and DG owner perspective are often opposed regarding appropriate control action in the network. In this paper, a multicriteria decision support based on AHP (analytical hierarchical processes) method is proposed for the choice of the dispatching action. The method is illustrated on the choice of the DG to be switched off in the case or reverse power flow.展开更多
To solve the problem of distributed tasks-platforms scheduling in holonic command and control(C2) organization,the basic elements of the organization are analyzed firstly and the formal description of organizational e...To solve the problem of distributed tasks-platforms scheduling in holonic command and control(C2) organization,the basic elements of the organization are analyzed firstly and the formal description of organizational elements and structure is provided. Based on the improvement of task execution quality,a single task resource scheduling model is established and the solving method based on the m-best algorithm is proposed. For the problem of tactical decision-holon cannot handle tasks with low priority effectively, a distributed resource scheduling collaboration mechanism based on platform pricing and a platform exchange mechanism based on resource capacities are designed. Finally,a series of experiments are designed to prove the effectiveness of these methods. The results show that the proposed distributed scheduling methods can realize the effective balance of platform resources.展开更多
In distributed parallel server system, location and redundancy of repficas have great influence on availability and efficiency of the system. In order to improve availability and efficiency of the system, two phase de...In distributed parallel server system, location and redundancy of repficas have great influence on availability and efficiency of the system. In order to improve availability and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O(n), resource optimizing scale increases with the increase of READ count.展开更多
Water Distribution Systems (WDSs) design and operation are usually done on a case-by-case basis. Numerous models have been proposed in the literature to solve specific problems in this field. The implementation of the...Water Distribution Systems (WDSs) design and operation are usually done on a case-by-case basis. Numerous models have been proposed in the literature to solve specific problems in this field. The implementation of these models to any real-world WDS optimization problem is left to the discretion of designers who lack the necessary tools that will guide them in the decision-making process for a given WDS design project. Practitioners are not always very familiar with optimization applied to water network design. This results in a quasi-exclusive use of engineering judgment when dealing with this issue. In order to support a decision process in this field, the present article suggests a step-by-step approach to solve the multi-objective design problem by using both engineering and optimization. A genetic algorithm is proposed as the optimization tool and the targeted objectives are: 1) to minimize the total cost (capital and operation), 2) to minimize the residence time of the water within the system and 3) to maximize a network reliability metric. The results of the case study show that preliminary analysis can significantly reduce decision variables and computational burden. Therefore, the approach will help network design practitioners to reduce optimization problems to a more manageable size.展开更多
In the classical Newsboy problem, we provide a new proof for the tight range of optimal order quantities for the newsboy problem when only the mean and standard deviation of demand are available. The new proof is only...In the classical Newsboy problem, we provide a new proof for the tight range of optimal order quantities for the newsboy problem when only the mean and standard deviation of demand are available. The new proof is only based on the definition of the optimal solution therefore it is the most straightforward method. It is also shown that the classical Scarf’s rule is the mid-point of the range of optimal order quantities. This provides an additional understanding of Scarf’s order rule as a distribution free decision.展开更多
基金supported by The National Key R&D Program of China(2020YFB0905900):Research on artificial intelligence application of power internet of things.
文摘The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.
文摘When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include those systems with interdependent sensorobservations and any network structure. It is also valid for m-ary Bayesian decision problems andbinary problems under the Neyman-Pearson criterion. Local decision rules of a sensor withcommunication from other sensors that are optimal for the sensor itself are also presented, whichtake the form of a generalized likelihood ratio test. Numerical examples are given to reveal someinteresting phenomena that communication between sensors can improve performance of a senordecision, but cannot guarantee to improve the global fusion performance when sensor rules were givenbefore fusing.
基金Supported by Division of Chemical,Bioengineering,Environmental and Transport Systems(CBET) of the National Science Foundation(NSF) of the United States of America
文摘Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In this approach,the network is decomposed into several subsystems,each of which is under the supervision of a corresponding computing agent(controller,optimizer).The agents coordinate their control and optimization decisions based on information communication among them.In recent years,algorithms and methods for distributed control and optimization are undergoing rapid development.In this paper,we provide a comprehensive,up-to-date review with perspectives and discussions on possible future directions.
文摘The optimization process of embedded, or DG (distributed generation) is a very complex task, and it should be evaluated and compared by means of multi-criteria methods of analysis. The classical method for selection is usually based only on a single criterion analysis, and it is defined by thermal or economic aspects. The problem of optimal dispatch of DG is typical example of optimization, because it differs from the classical problem of generation dispatch in the power system, due to the specific criteria related to the DG interconnection. The most important goals are to maximize the renewable production and to minimize the total cost, while satisfying additional constraints related to the operation of a distribution network. As there are many DGs in a distribution network, it is very complicated to decide the optimal DG outputs to satisfy all the criteria and constraints imposed by the distribution network. Another problem is the lack of the dispatcher control over DGs, and very often, the only available action is to switch on or off the generator. Finally, network operator and DG owner perspective are often opposed regarding appropriate control action in the network. In this paper, a multicriteria decision support based on AHP (analytical hierarchical processes) method is proposed for the choice of the dispatching action. The method is illustrated on the choice of the DG to be switched off in the case or reverse power flow.
基金supported by the National Natural Science Foundation of China(6157301761703425)+2 种基金the Aeronautical Science Fund(20175796014)Shaanxi Province Natural Science Foundation(2016JQ60622017JM6062)
文摘To solve the problem of distributed tasks-platforms scheduling in holonic command and control(C2) organization,the basic elements of the organization are analyzed firstly and the formal description of organizational elements and structure is provided. Based on the improvement of task execution quality,a single task resource scheduling model is established and the solving method based on the m-best algorithm is proposed. For the problem of tactical decision-holon cannot handle tasks with low priority effectively, a distributed resource scheduling collaboration mechanism based on platform pricing and a platform exchange mechanism based on resource capacities are designed. Finally,a series of experiments are designed to prove the effectiveness of these methods. The results show that the proposed distributed scheduling methods can realize the effective balance of platform resources.
文摘In distributed parallel server system, location and redundancy of repficas have great influence on availability and efficiency of the system. In order to improve availability and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O(n), resource optimizing scale increases with the increase of READ count.
文摘Water Distribution Systems (WDSs) design and operation are usually done on a case-by-case basis. Numerous models have been proposed in the literature to solve specific problems in this field. The implementation of these models to any real-world WDS optimization problem is left to the discretion of designers who lack the necessary tools that will guide them in the decision-making process for a given WDS design project. Practitioners are not always very familiar with optimization applied to water network design. This results in a quasi-exclusive use of engineering judgment when dealing with this issue. In order to support a decision process in this field, the present article suggests a step-by-step approach to solve the multi-objective design problem by using both engineering and optimization. A genetic algorithm is proposed as the optimization tool and the targeted objectives are: 1) to minimize the total cost (capital and operation), 2) to minimize the residence time of the water within the system and 3) to maximize a network reliability metric. The results of the case study show that preliminary analysis can significantly reduce decision variables and computational burden. Therefore, the approach will help network design practitioners to reduce optimization problems to a more manageable size.
文摘In the classical Newsboy problem, we provide a new proof for the tight range of optimal order quantities for the newsboy problem when only the mean and standard deviation of demand are available. The new proof is only based on the definition of the optimal solution therefore it is the most straightforward method. It is also shown that the classical Scarf’s rule is the mid-point of the range of optimal order quantities. This provides an additional understanding of Scarf’s order rule as a distribution free decision.