Deepwater oil and gas projects embody high risks from geology and engineering aspects, which exert substantial influence on project valuation. But the uncer- tainties may be converted to additional value to the projec...Deepwater oil and gas projects embody high risks from geology and engineering aspects, which exert substantial influence on project valuation. But the uncer- tainties may be converted to additional value to the projects in the case of flexible management. Given the flexibility of project management, this paper extends the classical real options model to a multi-factor model which contains oil price, geology, and engineering uncertainties. It then gives an application example of the new model to evaluate deepwater oil and gas projects with a numerical analytical method. Compared with other methods and models, this multi-factor real options model contains more project information. It reflects the potential value deriving not only from oil price variation but also from geology and engi- neering uncertainties, which provides more accurate and reliable valuation information for decision makers.展开更多
By studying the spectral properties of the underlying operator corresponding to the M/G/1 queueing model with optional second service we obtain that the time-dependent solution of the model strongly converges to its s...By studying the spectral properties of the underlying operator corresponding to the M/G/1 queueing model with optional second service we obtain that the time-dependent solution of the model strongly converges to its steady-state solution. We also show that the time-dependent queueing size at the departure point converges to the corresponding steady-state queueing size at the departure point.展开更多
This paper views knowledge management (KM) investment from the angle of real options, and demonstrates the utility of the real options approach to KM investment analysis. First, KM project has characteristics of unc...This paper views knowledge management (KM) investment from the angle of real options, and demonstrates the utility of the real options approach to KM investment analysis. First, KM project has characteristics of uncertainty, irreversibility and choice of timing, which suggests that we can appraise KM investment by real options theory. Second, the paper analyses corresponding states of real options in KM and finance options. Then, this paper sheds light on the way to the application of binomial pricing method to KM investment model, which includes modeling and conducting KM options. Finally, different results are shown of using DCF method and binomial model of option evaluation via a case.展开更多
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe t...We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe thepossible physical mechanisms for rogue wave phenomenon in financial markets and related fields.展开更多
This paper proposes an efficient option pricing model that incorporates stochastic interest rate(SIR),stochastic volatility(SV),and double exponential jump into the jump-diffusion settings.The model comprehensively co...This paper proposes an efficient option pricing model that incorporates stochastic interest rate(SIR),stochastic volatility(SV),and double exponential jump into the jump-diffusion settings.The model comprehensively considers the leptokurtosis and heteroscedasticity of the underlying asset’s returns,rare events,and an SIR.Using the model,we deduce the pricing characteristic function and pricing formula of a European option.Then,we develop the Markov chain Monte Carlo method with latent variable to solve the problem of parameter estimation under the double exponential jump-diffusion model with SIR and SV.For verification purposes,we conduct time efficiency analysis,goodness of fit analysis,and jump/drift term analysis of the proposed model.In addition,we compare the pricing accuracy of the proposed model with those of the Black-Scholes and the Kou(2002)models.The empirical results show that the proposed option pricing model has high time efficiency,and the goodness of fit and pricing accuracy are significantly higher than those of the other two models.展开更多
Traditional hourly rain gauges and automatic weather stations rarely measure solid precipitation, except for those stations with weighing-type precipitation sensors. Microwave remote sensing has only a low ability to ...Traditional hourly rain gauges and automatic weather stations rarely measure solid precipitation, except for those stations with weighing-type precipitation sensors. Microwave remote sensing has only a low ability to retrieve solid precipitation. In addition, there are no long-term, high-quality precipitation data in China that can be used to drive land surface models. To address these issues, in the China Meteorological Administration(CMA) Land Data Assimilation System(CLDAS), we blended the Climate Prediction Center(CPC) morphing technique(CMORPH) and Modern-Era Retrospective analysis for Research and Applications version 2(MERRA2) precipitation datasets with observed temperature and precipitation data on various temporal scales using multigrid variational analysis and temporal downscaling to produce a multi-source precipitation fusion dataset for China(CLDAS-Prcp). This dataset covers all of China at a resolution of 6.25 km at hourly intervals from 1998 to 2018. We performed dependent and independent evaluations of the CLDAS-Prcp dataset from the perspectives of seasonal total precipitation and land surface model simulation. Our results show that the CLDAS-Prcp dataset represents reasonably the spatial distribution of precipitation in China. The dependent evaluation indicates that the CLDAS-Prcp performs better than the MERRA2 precipitation, CMORPH precipitation, Global Land Data Assimilation System version 2(GLDAS-V2.1) precipitation,and CLDAS-V2.0 winter precipitation, as compared to the meteorological observational precipitation. The independent evaluation indicates that the CLDAS-Prcp dataset performs better than the Global Precipitation Measurement(GPM) precipitation dataset and is similar to the CLDAS-V2.0 summer precipitation dataset based on the hydrological observational precipitation. The simulated soil moisture content driven by CLDAS-Prcp is slightly better than that driven by the CLDAS-V2.0 precipitation, whereas the snow depth simulation driven by CLDAS-Prcp is much better than that driven by the CLDAS-V2.0 precipitation. This is because the CLDAS-Prcp data have included solid precipitation. Overall, the CLDAS-Prcp dataset can meet the needs of land surface and hydrological modeling studies.展开更多
基金supported from the National Science and Technology Major Project under Grant No.2011ZX05030
文摘Deepwater oil and gas projects embody high risks from geology and engineering aspects, which exert substantial influence on project valuation. But the uncer- tainties may be converted to additional value to the projects in the case of flexible management. Given the flexibility of project management, this paper extends the classical real options model to a multi-factor model which contains oil price, geology, and engineering uncertainties. It then gives an application example of the new model to evaluate deepwater oil and gas projects with a numerical analytical method. Compared with other methods and models, this multi-factor real options model contains more project information. It reflects the potential value deriving not only from oil price variation but also from geology and engi- neering uncertainties, which provides more accurate and reliable valuation information for decision makers.
基金supported by the National Natural Science Foundation of China(11371303)Natural Science Foundation of Xinjiang(2012211A023)Science Foundation of Xinjiang University(XY110101)
文摘By studying the spectral properties of the underlying operator corresponding to the M/G/1 queueing model with optional second service we obtain that the time-dependent solution of the model strongly converges to its steady-state solution. We also show that the time-dependent queueing size at the departure point converges to the corresponding steady-state queueing size at the departure point.
基金This paper is supported by National Natural Science Foundation of China (NSFC) and Ph.D. Research Fund.
文摘This paper views knowledge management (KM) investment from the angle of real options, and demonstrates the utility of the real options approach to KM investment analysis. First, KM project has characteristics of uncertainty, irreversibility and choice of timing, which suggests that we can appraise KM investment by real options theory. Second, the paper analyses corresponding states of real options in KM and finance options. Then, this paper sheds light on the way to the application of binomial pricing method to KM investment model, which includes modeling and conducting KM options. Finally, different results are shown of using DCF method and binomial model of option evaluation via a case.
基金Supported by National Natural Science Foundation of China under Grant No.60821002/F02
文摘We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe thepossible physical mechanisms for rogue wave phenomenon in financial markets and related fields.
基金supported by the grants from the National Natural Science Foundation of China(NSFC No.71471161)the Key Programs of the National Natural Science Foundation of China(NSFC Nos.71631005 and 71433001)+1 种基金the National Natural Science Foundation of China(NSFC No.71703142)Zhejiang College StudentsʹScience Innovation Project(Xin Miao Project)on“Research on Integrated Risk Measurement of Structured Financial Products Based on Affine Jump Diffusion Process”(No.2016R414069).
文摘This paper proposes an efficient option pricing model that incorporates stochastic interest rate(SIR),stochastic volatility(SV),and double exponential jump into the jump-diffusion settings.The model comprehensively considers the leptokurtosis and heteroscedasticity of the underlying asset’s returns,rare events,and an SIR.Using the model,we deduce the pricing characteristic function and pricing formula of a European option.Then,we develop the Markov chain Monte Carlo method with latent variable to solve the problem of parameter estimation under the double exponential jump-diffusion model with SIR and SV.For verification purposes,we conduct time efficiency analysis,goodness of fit analysis,and jump/drift term analysis of the proposed model.In addition,we compare the pricing accuracy of the proposed model with those of the Black-Scholes and the Kou(2002)models.The empirical results show that the proposed option pricing model has high time efficiency,and the goodness of fit and pricing accuracy are significantly higher than those of the other two models.
基金Supported by the National Key Research and Development Program of China(2018YFC1506601)National Natural Science Foundation of China(91437220)+1 种基金China Meteorological Administration Special Public Welfare Research Fund(GYHY201506002 and GYHY201206008)China Meteorological Administration“Meteorological Data Quality Control and Multi-source Data Fusion and Reanalysis”project。
文摘Traditional hourly rain gauges and automatic weather stations rarely measure solid precipitation, except for those stations with weighing-type precipitation sensors. Microwave remote sensing has only a low ability to retrieve solid precipitation. In addition, there are no long-term, high-quality precipitation data in China that can be used to drive land surface models. To address these issues, in the China Meteorological Administration(CMA) Land Data Assimilation System(CLDAS), we blended the Climate Prediction Center(CPC) morphing technique(CMORPH) and Modern-Era Retrospective analysis for Research and Applications version 2(MERRA2) precipitation datasets with observed temperature and precipitation data on various temporal scales using multigrid variational analysis and temporal downscaling to produce a multi-source precipitation fusion dataset for China(CLDAS-Prcp). This dataset covers all of China at a resolution of 6.25 km at hourly intervals from 1998 to 2018. We performed dependent and independent evaluations of the CLDAS-Prcp dataset from the perspectives of seasonal total precipitation and land surface model simulation. Our results show that the CLDAS-Prcp dataset represents reasonably the spatial distribution of precipitation in China. The dependent evaluation indicates that the CLDAS-Prcp performs better than the MERRA2 precipitation, CMORPH precipitation, Global Land Data Assimilation System version 2(GLDAS-V2.1) precipitation,and CLDAS-V2.0 winter precipitation, as compared to the meteorological observational precipitation. The independent evaluation indicates that the CLDAS-Prcp dataset performs better than the Global Precipitation Measurement(GPM) precipitation dataset and is similar to the CLDAS-V2.0 summer precipitation dataset based on the hydrological observational precipitation. The simulated soil moisture content driven by CLDAS-Prcp is slightly better than that driven by the CLDAS-V2.0 precipitation, whereas the snow depth simulation driven by CLDAS-Prcp is much better than that driven by the CLDAS-V2.0 precipitation. This is because the CLDAS-Prcp data have included solid precipitation. Overall, the CLDAS-Prcp dataset can meet the needs of land surface and hydrological modeling studies.