A unique Rh/TiO2 solid acid catalyst modified with H2S04 was synthesized and evaluated in the esterification reaction of propylene glycol methyl ether and decomposition of methyl orange (MO) in aqueous phase under h...A unique Rh/TiO2 solid acid catalyst modified with H2S04 was synthesized and evaluated in the esterification reaction of propylene glycol methyl ether and decomposition of methyl orange (MO) in aqueous phase under halogen lamp irradiation. For this purpose, rhodium (Rh) nanoparticles were loaded on S02-/Ti02 via the photo-deposition method. It was found that S024-/Rh-Ti02 exhibited stronger catalytic activity than S02-/ Ti02. The new catalysts were characterized by X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM) and high-resolution (HRTEM), X-ray photoelectron spec- troscopy (XPS) and Fourier Transform infrared spectroscopy (FrlR). Results from XRD and BET show that S02-/Rh-Ti02 has higher specific surface area and smaller pore size than S02-fri02. The distribution of loaded Rh was found to be uniform with a particle size of 2-4 nm. Data from XPS reveal that Rh primarily exists as Rh~ and Rh3 + in Rh-Ti02 and SO^-/Rh-TiO~. These valence forms of Rh likely contribute to the en- hanced catalytic activity. Furthermore, FT-IR spectra of the catalysts show an abundance of surface hydroxyl groups, which help the formation of hydroxyl radicals and the enhancement of surface acid density. The results show that more acid sites are formed on the sulfated Rh-Ti02, and these acidic sites are largely responsible for improving the catalytic performance. This superior SO]-/Rh-Ti02 catalyst has potential applications in reactions reouirinz efficient acid catalysts, includinz esterification reactions and waste water treatment.展开更多
This paper reports on the synthesis of copper doped sulfated titania nano-crystalline powders with varying (2.0%-10.0%, by mass) by single step sol gel method. The synthesized photo catalyst has been characterized b...This paper reports on the synthesis of copper doped sulfated titania nano-crystalline powders with varying (2.0%-10.0%, by mass) by single step sol gel method. The synthesized photo catalyst has been characterized by employing various techniques like X-ray Diffraction (XRD), Ultraviolet-Visible Diffuse Reflection Spectroscopy (UV-Vis DRS), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), Fourier Transform Infrared Spectroscopic Studies (FT-IR), and Transmission Electron Microscopy (TEM). From the XRD and TEM results, all the samples were reported in anatase phase with reduction in particle size in the range of 7 to 12 nm. SEM indicated the change in morphology of the particles. The presence of copper in titania lattice was evidenced by XPS. From UV-Vis DRS and FT-IR studies indicated that prominent absorption shift is observed towards visible region (red shift), the entry ofCu2 + into Ti02 lattice as a substitution- al dopant and S042- ions were covalently bonded with Ti4+ on the surface of the copper doped titania respectively. The photocatalytic activity studies were investigated by considering methyl orange (MO) as dye pollutant in the presence of the visible light. The effect of various parameters like effect of dosage of the catalyst, dopant concentration, pH of the solution, and concentration of the dye was studied in detail.展开更多
A double-layer TiO2 nanotube arrays were formed by two-step anodization of Ti foils in different electrolytes. First, Ti in 0.5 wt% HF was anodized to form thin nanotube layer. Afterwards a second anodization was cond...A double-layer TiO2 nanotube arrays were formed by two-step anodization of Ti foils in different electrolytes. First, Ti in 0.5 wt% HF was anodized to form thin nanotube layer. Afterwards a second anodization was conducted in a formamide based electrolyte, which allowed the second layer of nanotube growing directly underneath the first one. From FESEM investigation we found that the thickness of second layer corresponded to the anodization time, the increasing of which would lead to the excessive etching on the first layer. The first layer protected the lower one from fluoride corrosion during anodization process. The double layer TiO2 nanotube arrays showed no benefit to photodegradation effect in methyl orange degradation experiments.展开更多
A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physic...A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.展开更多
The effect of ultraviolet irradiation on generation of radicals and formation of intermediates was investigated in electrochemical oxidation of the azo-dye Orange I1 using a TiO2-modified β- PbO2 electrode. It was fo...The effect of ultraviolet irradiation on generation of radicals and formation of intermediates was investigated in electrochemical oxidation of the azo-dye Orange I1 using a TiO2-modified β- PbO2 electrode. It was found that a characteristic absorbance of quinonic compounds at 255 nm, which is responsible for the rate-determining step during aromatics degradation, was formed only in electrocatalytic oxidation. The dye can be oxidized by either HO radicals or direct electron transfer. Quinonic compounds were produced concurrently. The removal of TOC by photo-assisted electrocatalytic oxidation was 1.56 times that of the sum of the other two processes, indicating a significant synergetic effect. In addition, once the ultraviolet irradiation was introduced into the process of electrocatalytic oxidation, the degradation rate of quinonic compounds was enhanced by as much as a factor of two. The more efficient generation of HO radicals resulted from the introduction of ultraviolet irradiation in electrocatalytic oxidation led to the significant synergetic effect as well as the inhibiting effect on the accumulation of quinonic compounds.展开更多
基金Supported by the Youth Fund of Fujian Province(JA14290,JA15475)the Natural Fund of Fujian Province(2015J01601)the Collaborative Innovation Center of Clean Coal Gasification Technology(XK1403,XK1401)
文摘A unique Rh/TiO2 solid acid catalyst modified with H2S04 was synthesized and evaluated in the esterification reaction of propylene glycol methyl ether and decomposition of methyl orange (MO) in aqueous phase under halogen lamp irradiation. For this purpose, rhodium (Rh) nanoparticles were loaded on S02-/Ti02 via the photo-deposition method. It was found that S024-/Rh-Ti02 exhibited stronger catalytic activity than S02-/ Ti02. The new catalysts were characterized by X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM) and high-resolution (HRTEM), X-ray photoelectron spec- troscopy (XPS) and Fourier Transform infrared spectroscopy (FrlR). Results from XRD and BET show that S02-/Rh-Ti02 has higher specific surface area and smaller pore size than S02-fri02. The distribution of loaded Rh was found to be uniform with a particle size of 2-4 nm. Data from XPS reveal that Rh primarily exists as Rh~ and Rh3 + in Rh-Ti02 and SO^-/Rh-TiO~. These valence forms of Rh likely contribute to the en- hanced catalytic activity. Furthermore, FT-IR spectra of the catalysts show an abundance of surface hydroxyl groups, which help the formation of hydroxyl radicals and the enhancement of surface acid density. The results show that more acid sites are formed on the sulfated Rh-Ti02, and these acidic sites are largely responsible for improving the catalytic performance. This superior SO]-/Rh-Ti02 catalyst has potential applications in reactions reouirinz efficient acid catalysts, includinz esterification reactions and waste water treatment.
文摘This paper reports on the synthesis of copper doped sulfated titania nano-crystalline powders with varying (2.0%-10.0%, by mass) by single step sol gel method. The synthesized photo catalyst has been characterized by employing various techniques like X-ray Diffraction (XRD), Ultraviolet-Visible Diffuse Reflection Spectroscopy (UV-Vis DRS), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), Fourier Transform Infrared Spectroscopic Studies (FT-IR), and Transmission Electron Microscopy (TEM). From the XRD and TEM results, all the samples were reported in anatase phase with reduction in particle size in the range of 7 to 12 nm. SEM indicated the change in morphology of the particles. The presence of copper in titania lattice was evidenced by XPS. From UV-Vis DRS and FT-IR studies indicated that prominent absorption shift is observed towards visible region (red shift), the entry ofCu2 + into Ti02 lattice as a substitution- al dopant and S042- ions were covalently bonded with Ti4+ on the surface of the copper doped titania respectively. The photocatalytic activity studies were investigated by considering methyl orange (MO) as dye pollutant in the presence of the visible light. The effect of various parameters like effect of dosage of the catalyst, dopant concentration, pH of the solution, and concentration of the dye was studied in detail.
基金Funded by National Basic Research Program of China(No.2009CB939704)
文摘A double-layer TiO2 nanotube arrays were formed by two-step anodization of Ti foils in different electrolytes. First, Ti in 0.5 wt% HF was anodized to form thin nanotube layer. Afterwards a second anodization was conducted in a formamide based electrolyte, which allowed the second layer of nanotube growing directly underneath the first one. From FESEM investigation we found that the thickness of second layer corresponded to the anodization time, the increasing of which would lead to the excessive etching on the first layer. The first layer protected the lower one from fluoride corrosion during anodization process. The double layer TiO2 nanotube arrays showed no benefit to photodegradation effect in methyl orange degradation experiments.
基金Financial supports from the Project Supported by the Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China(09KJD150002)Project Supported by the Graduate Innovation Program Foundation of the Jiangsu Province Higher Education Institutions of China(CXLX_0570)
文摘A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.
基金supported by the starting fund for talents of North China University of Water Resources and Electric Power,and partially by the National Science Foundation of China(No.51378205)
文摘The effect of ultraviolet irradiation on generation of radicals and formation of intermediates was investigated in electrochemical oxidation of the azo-dye Orange I1 using a TiO2-modified β- PbO2 electrode. It was found that a characteristic absorbance of quinonic compounds at 255 nm, which is responsible for the rate-determining step during aromatics degradation, was formed only in electrocatalytic oxidation. The dye can be oxidized by either HO radicals or direct electron transfer. Quinonic compounds were produced concurrently. The removal of TOC by photo-assisted electrocatalytic oxidation was 1.56 times that of the sum of the other two processes, indicating a significant synergetic effect. In addition, once the ultraviolet irradiation was introduced into the process of electrocatalytic oxidation, the degradation rate of quinonic compounds was enhanced by as much as a factor of two. The more efficient generation of HO radicals resulted from the introduction of ultraviolet irradiation in electrocatalytic oxidation led to the significant synergetic effect as well as the inhibiting effect on the accumulation of quinonic compounds.