With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key techn...With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.展开更多
To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital d...To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.展开更多
The impact of orbital parameters on the climate of China in the Holocene is simulated from 11kaBP to 0kaBP with an interval of 1ka using National Center for Atmospheric Research (NCAR) Community Atmosphere Model versi...The impact of orbital parameters on the climate of China in the Holocene is simulated from 11kaBP to 0kaBP with an interval of 1ka using National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 2 (CAM2). The geographic distributions of summer precipitation around both 9kaBP and 4kaBP were realistically captured by CAM2, compared to the proxy data collected from 80 stations. Among all orbital parameters, the precession plays a major role in computing solar radiation, which dominates the variations of summer precipitation over China during the Holocene. The summers around 9kaBP were the wettest in China. Later on, the precipitation gradually reduced to the minimum around 0kaBP by about 10%. This tremendous change occurred from the Northeast China and the eastern Inner Mongolia extending southwestwards to the Qinghai-Tibet Plateau, especially over the Qinghai-Tibet Plateau.展开更多
Focusing on carrying out GPS occultation observat io ns with a receiver set on LEO satellite, this paper develops the LEO orbit simul ation system based on which the occultation events can be simulated taking into acc...Focusing on carrying out GPS occultation observat io ns with a receiver set on LEO satellite, this paper develops the LEO orbit simul ation system based on which the occultation events can be simulated taking into account the geometric relationship of the satellites and the field of view of th e receiver antenna. In this paper, the impacts of 4 types of LEO orbit parameter s including argument of latitude (AOL), right ascension of ascending node (RAAN) , orbit height and orbit inclination on the distribution and number of occultati on events observed with a single LEO satellite are discussed through simulat ion and some conclusions are drawn.展开更多
For the two_parameter family of planar mapping, a method to stabilize an unstable fixed point without stable manifold embedding in hyperchaos is introduced. It works by adjusting the two parameters in each iteration o...For the two_parameter family of planar mapping, a method to stabilize an unstable fixed point without stable manifold embedding in hyperchaos is introduced. It works by adjusting the two parameters in each iteration of the map. The explicit expressions for the parameter adjustments are derived, and strict proof of convergence for method is given.展开更多
Currently,the broadcast ephemerides used in GEOs are same as those of the MEOs and IGSOs in the BeiDou navigation constellation.However,a trade-off strategy,i.e.an orbital inclination of 5°rotation,is needed in t...Currently,the broadcast ephemerides used in GEOs are same as those of the MEOs and IGSOs in the BeiDou navigation constellation.However,a trade-off strategy,i.e.an orbital inclination of 5°rotation,is needed in the fitting algorithm to solve the ephemeris parameters as well as the user satellite position computation for GEOs.Based on the standard broadcast ephemerides,the representations of both the orbit and its perturbation were revised according to the second class of nonsingular orbital elements.In this research,a 16-parameter broadcast ephemeris is presented specifically for GEOs,and user satellite position computation formulas were derived correspondingly.Fit simulations show that the root of mean squares(RMS)of user range error(URE)with two hour and three hour data sets are better than 0.05 m and 0.1 m,respectively.展开更多
In this paper we solve the three-dimensional coordinate that the satellite is relative to the geocentric coordinate under certain conditions, making use of the satellite orbit standard trajectory differential equation...In this paper we solve the three-dimensional coordinate that the satellite is relative to the geocentric coordinate under certain conditions, making use of the satellite orbit standard trajectory differential equations. By means of the method of tri-parametric equation fitting, we confirm the three-dimensional trajectory function of target flying object to geocentric coordinate in double satellites observation conditions, and analyze theoretical errors.展开更多
This paper systematically investigates the local distortion and electron paramagnetic resonance (EPR) parameter for CdCl2:V^2+ and CsMgX3:V^2+ (X=Cl, Br) systems on the basis of the complete energy matrix, in ...This paper systematically investigates the local distortion and electron paramagnetic resonance (EPR) parameter for CdCl2:V^2+ and CsMgX3:V^2+ (X=Cl, Br) systems on the basis of the complete energy matrix, in which not only the contributions due to the spin-orbit coupling of the central ions but also that of the ligands are considered. To describe the difference of overlapping between d-orbits and p orbit, two spin-orbit coupling coefficients are introduced. By simulating the crystal field parameter and EPR parameter, the local distortion parameters are studied and the relationships between the EPR parameter and the spin-orbit coupling coefficients as well as divergent parameter are discussed. These results show that the local structures exhibit compression distortion for CdCl2:V^2+ and elongation distortions for CsMgX3:V^2+ (X:Cl, Br), respectively. It notes that the empirical formula R≈RH T (ri - rh)/2 is not suitable for CdCl2:V^2+ and CsMgX3:V^2+ (X=Cl, Br) systems. The contributions of ligand to spin-orbit coupling interaction cannot be neglected for strong covalent systems, especially for V^2+ doped in CsMgBr3:V^2+.展开更多
The recent Galileo spacecraft explored Jupiter and its satellite system and provided us with new geodetic data. In order to discuss the dynamical parameters and secular tidal effect of Io, the theory of synchronous s...The recent Galileo spacecraft explored Jupiter and its satellite system and provided us with new geodetic data. In order to discuss the dynamical parameters and secular tidal effect of Io, the theory of synchronous satellite is described in detail. Using the new geodetic data of Io, two sets of Io's internal structure models are constructed based on the asthenosphere assumption. The liberation parameters α,β,γ and dynamical flattening H are calculated for the models of Io. A comparison of Io with the Moon indicates that they are quite different in many characteristics in spite of the fact that they are approximately equal in mass and size and that they both orbit synchronously.展开更多
The ion-acoustic(IA) mode exhibiting various orbital angular momentum(OAM) states is examined in a plasma with drifting electrons.The constituent plasma species are modeled with a non-gyrotropic Maxwellian distributio...The ion-acoustic(IA) mode exhibiting various orbital angular momentum(OAM) states is examined in a plasma with drifting electrons.The constituent plasma species are modeled with a non-gyrotropic Maxwellian distribution and discussion of dispersion relation and growth rate of twisted IA waves under various conditions is presented.In the domain of kinetic model,the twisted IA waves are characterized by Laguerre-Gaussian(LG) solutions,where plasma distribution function and electric field are decomposed into axial and azimuthal components.The plasma response function is obtained under paraxial approximations and investigated for threshold condition of instability growth rate with helical electric field structures.The impact of an extra electron specie on the instability is demonstrated through a comparison of twisted waves for single and double electron species.展开更多
Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illust...Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.展开更多
The analysis centers of the Multi-GNSS Pilot Project of the International GNSS Service provide orbit and clock products for the global navigation satellite systems(GNSSs)Global Positioning System(GPS),GLONASS,Galileo,...The analysis centers of the Multi-GNSS Pilot Project of the International GNSS Service provide orbit and clock products for the global navigation satellite systems(GNSSs)Global Positioning System(GPS),GLONASS,Galileo,and BeiDou,as well as for the Japanese regional Quasi-Zenith Satellite System(QZSS).Due to improved solar radiation pressure modeling and other more sophisticated models,the consistency of these products has improved in recent years.The current orbit consistency between different analysis centers is on the level of a few centimeters for GPS,around one decimeter for GLONASS and Galileo,a few decimeters for BeiDou-2,and several decimeters for QZSS.The clock consistency is about 2 cm for GPS,5 cm for GLONASS and Galileo,and 10 cm for BeiDou-2.In terms of carrier phase modeling error for precise point positioning,the various products exhibit consistencies of 2–3 cm for GPS,6–14 cm for GLONASS,3–10 cm for Galileo,and 10–17 cm for BeiDou-2.展开更多
基金National Natural Science Foundation of China(U20B2054)。
文摘With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.
基金Supported by the National Natural Science Foundation of China(50975141)the Aviation Science Fund(20091652018,2010352005)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2012ZX04003031-4)
文摘To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.
基金R&D Special Found for Public Welfare Industry (meteorology) (GYHY200706010)National Science Foundation for Post-doctoral Scientists of China (4131482-051)
文摘The impact of orbital parameters on the climate of China in the Holocene is simulated from 11kaBP to 0kaBP with an interval of 1ka using National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 2 (CAM2). The geographic distributions of summer precipitation around both 9kaBP and 4kaBP were realistically captured by CAM2, compared to the proxy data collected from 80 stations. Among all orbital parameters, the precession plays a major role in computing solar radiation, which dominates the variations of summer precipitation over China during the Holocene. The summers around 9kaBP were the wettest in China. Later on, the precipitation gradually reduced to the minimum around 0kaBP by about 10%. This tremendous change occurred from the Northeast China and the eastern Inner Mongolia extending southwestwards to the Qinghai-Tibet Plateau, especially over the Qinghai-Tibet Plateau.
文摘Focusing on carrying out GPS occultation observat io ns with a receiver set on LEO satellite, this paper develops the LEO orbit simul ation system based on which the occultation events can be simulated taking into account the geometric relationship of the satellites and the field of view of th e receiver antenna. In this paper, the impacts of 4 types of LEO orbit parameter s including argument of latitude (AOL), right ascension of ascending node (RAAN) , orbit height and orbit inclination on the distribution and number of occultati on events observed with a single LEO satellite are discussed through simulat ion and some conclusions are drawn.
文摘For the two_parameter family of planar mapping, a method to stabilize an unstable fixed point without stable manifold embedding in hyperchaos is introduced. It works by adjusting the two parameters in each iteration of the map. The explicit expressions for the parameter adjustments are derived, and strict proof of convergence for method is given.
文摘Currently,the broadcast ephemerides used in GEOs are same as those of the MEOs and IGSOs in the BeiDou navigation constellation.However,a trade-off strategy,i.e.an orbital inclination of 5°rotation,is needed in the fitting algorithm to solve the ephemeris parameters as well as the user satellite position computation for GEOs.Based on the standard broadcast ephemerides,the representations of both the orbit and its perturbation were revised according to the second class of nonsingular orbital elements.In this research,a 16-parameter broadcast ephemeris is presented specifically for GEOs,and user satellite position computation formulas were derived correspondingly.Fit simulations show that the root of mean squares(RMS)of user range error(URE)with two hour and three hour data sets are better than 0.05 m and 0.1 m,respectively.
文摘In this paper we solve the three-dimensional coordinate that the satellite is relative to the geocentric coordinate under certain conditions, making use of the satellite orbit standard trajectory differential equations. By means of the method of tri-parametric equation fitting, we confirm the three-dimensional trajectory function of target flying object to geocentric coordinate in double satellites observation conditions, and analyze theoretical errors.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10774103 and 10974138)
文摘This paper systematically investigates the local distortion and electron paramagnetic resonance (EPR) parameter for CdCl2:V^2+ and CsMgX3:V^2+ (X=Cl, Br) systems on the basis of the complete energy matrix, in which not only the contributions due to the spin-orbit coupling of the central ions but also that of the ligands are considered. To describe the difference of overlapping between d-orbits and p orbit, two spin-orbit coupling coefficients are introduced. By simulating the crystal field parameter and EPR parameter, the local distortion parameters are studied and the relationships between the EPR parameter and the spin-orbit coupling coefficients as well as divergent parameter are discussed. These results show that the local structures exhibit compression distortion for CdCl2:V^2+ and elongation distortions for CsMgX3:V^2+ (X:Cl, Br), respectively. It notes that the empirical formula R≈RH T (ri - rh)/2 is not suitable for CdCl2:V^2+ and CsMgX3:V^2+ (X=Cl, Br) systems. The contributions of ligand to spin-orbit coupling interaction cannot be neglected for strong covalent systems, especially for V^2+ doped in CsMgBr3:V^2+.
文摘The recent Galileo spacecraft explored Jupiter and its satellite system and provided us with new geodetic data. In order to discuss the dynamical parameters and secular tidal effect of Io, the theory of synchronous satellite is described in detail. Using the new geodetic data of Io, two sets of Io's internal structure models are constructed based on the asthenosphere assumption. The liberation parameters α,β,γ and dynamical flattening H are calculated for the models of Io. A comparison of Io with the Moon indicates that they are quite different in many characteristics in spite of the fact that they are approximately equal in mass and size and that they both orbit synchronously.
文摘The ion-acoustic(IA) mode exhibiting various orbital angular momentum(OAM) states is examined in a plasma with drifting electrons.The constituent plasma species are modeled with a non-gyrotropic Maxwellian distribution and discussion of dispersion relation and growth rate of twisted IA waves under various conditions is presented.In the domain of kinetic model,the twisted IA waves are characterized by Laguerre-Gaussian(LG) solutions,where plasma distribution function and electric field are decomposed into axial and azimuthal components.The plasma response function is obtained under paraxial approximations and investigated for threshold condition of instability growth rate with helical electric field structures.The impact of an extra electron specie on the instability is demonstrated through a comparison of twisted waves for single and double electron species.
基金supported by the National Natural Science Foundation of China (10702078)the Research Foundation of National University of Defense Technology (JC08-01-05)
文摘Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.
基金We would like to acknowledge the efforts of the MGEX station operators,data,and analysis centers,as well as the ILRS for providing SLR normal points.
文摘The analysis centers of the Multi-GNSS Pilot Project of the International GNSS Service provide orbit and clock products for the global navigation satellite systems(GNSSs)Global Positioning System(GPS),GLONASS,Galileo,and BeiDou,as well as for the Japanese regional Quasi-Zenith Satellite System(QZSS).Due to improved solar radiation pressure modeling and other more sophisticated models,the consistency of these products has improved in recent years.The current orbit consistency between different analysis centers is on the level of a few centimeters for GPS,around one decimeter for GLONASS and Galileo,a few decimeters for BeiDou-2,and several decimeters for QZSS.The clock consistency is about 2 cm for GPS,5 cm for GLONASS and Galileo,and 10 cm for BeiDou-2.In terms of carrier phase modeling error for precise point positioning,the various products exhibit consistencies of 2–3 cm for GPS,6–14 cm for GLONASS,3–10 cm for Galileo,and 10–17 cm for BeiDou-2.