Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cycli...Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cyclic integrals, the order of the system can be reduced. If the relativistic Birkhoffian system has a cyclic integral, then the Birkhoffian equations can be reduced at least by two degrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics, and the relativistic Lagrangian mechanics are discussed, and the Routh order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of the result.展开更多
Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform a...Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.展开更多
Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industr...Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industry requirements,analytically tractable and computationally cheap models must be designed.This is the essence task of Model Order Reduction(MOR).This article describes the basics of MOR optimization,various way of designing MOR,and gives the conclusion about existing methods.In addition,it proposed some heuristic footpath.展开更多
针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计...针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。展开更多
In this article, we propose a generalized exp(-Φ(ξ))-expansion method and successfully implement it to find exact traveling wave solutions to the fifth order standard Sawada-Kotera (SK) equation. The exact traveling...In this article, we propose a generalized exp(-Φ(ξ))-expansion method and successfully implement it to find exact traveling wave solutions to the fifth order standard Sawada-Kotera (SK) equation. The exact traveling wave solutions are established in the form of trigonometric, hyperbolic, exponential and rational functions with some free parameters. It is shown that this method is standard, effective and easily applicable mathematical tool for solving nonlinear partial differential equations arises in the field of mathematical physics and engineering.展开更多
Value-at-Risk (VaR) estimation via Monte Carlo (MC) simulation is studied here. The variance reduction technique is proposed in order to speed up MC algorithm. The algorithm for estimating the probability of high ...Value-at-Risk (VaR) estimation via Monte Carlo (MC) simulation is studied here. The variance reduction technique is proposed in order to speed up MC algorithm. The algorithm for estimating the probability of high portfolio losses (more general risk measure) based on the Cross - Entropy importance sampling is developed. This algorithm can easily be applied in any light- or heavy-tailed case without an extra adaptation. Besides, it does not loose in the performance in comparison to other known methods. A numerical study in both cases is performed and the variance reduction rate is compared with other known methods. The problem of VaR estimation using procedures for estimating the probability of high portfolio losses is also discussed.展开更多
A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordin...A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new ...We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (CLGRM), the abundant solutions of NLSE and HONLSE are obtained.展开更多
为了有效实现板件的抗振性动力学设计,研究约束阻尼板拓扑动力学优化方法。建立约束阻尼板有限元动力学分析模型,推导出模态损耗因子计算公式;建立了基于模态损耗因子最大化目标,以阻尼层单元相对密度为拓扑变量,以阻尼材料使用量及结...为了有效实现板件的抗振性动力学设计,研究约束阻尼板拓扑动力学优化方法。建立约束阻尼板有限元动力学分析模型,推导出模态损耗因子计算公式;建立了基于模态损耗因子最大化目标,以阻尼层单元相对密度为拓扑变量,以阻尼材料使用量及结构频率作为控制的阻尼板优化数学模型;利用序列凸规划理论而对传统优化准则法进行改进,采用改进准则法GCMOC(global extreme point converged by method of optimization criterion)解算优化模型以求取全域性优化解,推导出面向GCMOC的拓扑变量迭代式;考虑到多阶次RAMP(rational approxination of material properties)函数的形状具有较理想的可控下凹几何特征,提出在优化迭代中采用多阶次RAMP材料插值模型(MO-RAMP)对拓扑变量集合进行惩罚以实现其快速的0,1二值化,并尽量减少处于0.3~0.7的中间拓扑变量值出现;编制了面向约束阻尼板的拓扑动力学优化程序,实现了基于MO-RAMP的约束阻尼板GCMOC法变密度式减振拓扑动力学优化过程。算例分析表明,MO-RAMP与GCMOC复合的算法用于阻尼板拓扑迭代时,可将阻尼单元密度值快速地推向逼近0或1的值。它能得到清晰的阻尼单元优化密度云并有利于优化构型的实现;能在大幅减少阻尼材料用量条件下充分发挥其黏弹耗能效应,能在保证阻尼板动力学特性基本稳定的前提下使结构获得更好的减振效果。展开更多
A mathematical model of CE reaction schemes under first or pseudo-first order conditions with different diffusion coefficients at a spherical electrode under non-steady-state conditions is described. The model is base...A mathematical model of CE reaction schemes under first or pseudo-first order conditions with different diffusion coefficients at a spherical electrode under non-steady-state conditions is described. The model is based on non-stationary diffusion equation containing a non-linear reaction term. This paper presents the complex numerical method (Homotopy perturbation method) to solve the system of non-linear differential equation that describes the homogeneous processes coupled to electrode reaction. In this paper the approximate analytical expressions of the non-steady-state concentrations and current at spherical electrodes for homogeneous reactions mechanisms are derived for all values of the reaction diffusion parameters. These approximate results are compared with the available analytical results and are found to be in good agreement.展开更多
This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matr...This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos, 10372053 and 10472040, the Natural Science Foundation of Hunan Province under Grant No. 03JJY3005, the Scientific Research Foundation of Eduction Burean of Hunan Province under Grant No. 02C033 and the 0utstanding Young Talents Training Fund of Liaoning Province under Grant No. 3040005
文摘Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cyclic integrals, the order of the system can be reduced. If the relativistic Birkhoffian system has a cyclic integral, then the Birkhoffian equations can be reduced at least by two degrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics, and the relativistic Lagrangian mechanics are discussed, and the Routh order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of the result.
文摘Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.
文摘Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industry requirements,analytically tractable and computationally cheap models must be designed.This is the essence task of Model Order Reduction(MOR).This article describes the basics of MOR optimization,various way of designing MOR,and gives the conclusion about existing methods.In addition,it proposed some heuristic footpath.
文摘针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。
文摘In this article, we propose a generalized exp(-Φ(ξ))-expansion method and successfully implement it to find exact traveling wave solutions to the fifth order standard Sawada-Kotera (SK) equation. The exact traveling wave solutions are established in the form of trigonometric, hyperbolic, exponential and rational functions with some free parameters. It is shown that this method is standard, effective and easily applicable mathematical tool for solving nonlinear partial differential equations arises in the field of mathematical physics and engineering.
文摘Value-at-Risk (VaR) estimation via Monte Carlo (MC) simulation is studied here. The variance reduction technique is proposed in order to speed up MC algorithm. The algorithm for estimating the probability of high portfolio losses (more general risk measure) based on the Cross - Entropy importance sampling is developed. This algorithm can easily be applied in any light- or heavy-tailed case without an extra adaptation. Besides, it does not loose in the performance in comparison to other known methods. A numerical study in both cases is performed and the variance reduction rate is compared with other known methods. The problem of VaR estimation using procedures for estimating the probability of high portfolio losses is also discussed.
基金The National Natural Science Foundation of China (No10471023)
文摘A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
基金National Natural Science Foundation of China under Grant No.10675065
文摘We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (CLGRM), the abundant solutions of NLSE and HONLSE are obtained.
文摘为了有效实现板件的抗振性动力学设计,研究约束阻尼板拓扑动力学优化方法。建立约束阻尼板有限元动力学分析模型,推导出模态损耗因子计算公式;建立了基于模态损耗因子最大化目标,以阻尼层单元相对密度为拓扑变量,以阻尼材料使用量及结构频率作为控制的阻尼板优化数学模型;利用序列凸规划理论而对传统优化准则法进行改进,采用改进准则法GCMOC(global extreme point converged by method of optimization criterion)解算优化模型以求取全域性优化解,推导出面向GCMOC的拓扑变量迭代式;考虑到多阶次RAMP(rational approxination of material properties)函数的形状具有较理想的可控下凹几何特征,提出在优化迭代中采用多阶次RAMP材料插值模型(MO-RAMP)对拓扑变量集合进行惩罚以实现其快速的0,1二值化,并尽量减少处于0.3~0.7的中间拓扑变量值出现;编制了面向约束阻尼板的拓扑动力学优化程序,实现了基于MO-RAMP的约束阻尼板GCMOC法变密度式减振拓扑动力学优化过程。算例分析表明,MO-RAMP与GCMOC复合的算法用于阻尼板拓扑迭代时,可将阻尼单元密度值快速地推向逼近0或1的值。它能得到清晰的阻尼单元优化密度云并有利于优化构型的实现;能在大幅减少阻尼材料用量条件下充分发挥其黏弹耗能效应,能在保证阻尼板动力学特性基本稳定的前提下使结构获得更好的减振效果。
文摘A mathematical model of CE reaction schemes under first or pseudo-first order conditions with different diffusion coefficients at a spherical electrode under non-steady-state conditions is described. The model is based on non-stationary diffusion equation containing a non-linear reaction term. This paper presents the complex numerical method (Homotopy perturbation method) to solve the system of non-linear differential equation that describes the homogeneous processes coupled to electrode reaction. In this paper the approximate analytical expressions of the non-steady-state concentrations and current at spherical electrodes for homogeneous reactions mechanisms are derived for all values of the reaction diffusion parameters. These approximate results are compared with the available analytical results and are found to be in good agreement.
基金Project supported by the National Natural Science Foundation of China(No.10672194)the China-Russia Cooperative Project(the National Natural Science Foundation of China and the Russian Foundation for Basic Research)(No.10811120012)
文摘This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.