With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the ac...With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the acquired vibration signals are often non-stationary and nonlinear,which are difficult to be processed by traditional analysis methods.In order to solve the noise reduction problem of multiple signals under variable speed,a COT-DCS method combining the Computed Order Tracking(COT)based on Chirplet Path Pursuit(CPP)and Distributed Compressed Sensing(DCS)is proposed.Firstly,the instantaneous frequency(IF)is extracted by CPP,and the speed is obtained by fitting.Then,the speed is used for equal angle sampling of time-domain signals,and angle-domain signals are obtained by COT without a tachometer to eliminate the nonstationarity,and the angledomain signals are compressed and reconstructed by DCS to achieve noise reduction of multiple signals.The accuracy of the CPP method is verified by simulated,experimental signals and compared with some existing IF extraction methods.The COT method also shows good signal stabilization ability through simulation and experiment.Finally,combined with the comparative test of the other two algorithms and four noise reduction effect indicators,the COT-DCS based on the CPP method combines the advantages of the two algorithms and has better noise reduction effect and stability.It is shown that this method is an effective multi-signal noise reduction method.展开更多
Order analysis is one of the most important technique means of condition monitoring and fault diagnosis for rotary machinery.The traditional order analyses usually employ the Vold-Kalman filtering,however this method ...Order analysis is one of the most important technique means of condition monitoring and fault diagnosis for rotary machinery.The traditional order analyses usually employ the Vold-Kalman filtering,however this method is confined to the expensive hardware equipments.This paper starts from Gabor transform and applies the Gabor time-frequency filtering to vibration signal.The order component's time-frequency coefficients are extracted by mask operation.The order component is reconstructed from the obtained coefficients.The following four key technologies,such as smoothing rotary speed curve,defining filtering band width,constructing the mask operation matrix and reconstructing signal component,are also deeply discussed.Moreover,the technique to smooth the rotary speed curve based on polynomial approximation,the method to determine filtering band width,the arithmetic to constitute mask array and the iterative algorithm to reconstruct signal based on minimum mean square error are specifically analyzed.The 4th order component is successfully gained by using the methods that Gabor time-frequency filter,and the validity and feasibility of this method are approved.This method can solve the problem of order tracking filter technologies which used to depend on hardware and efficiently improve the accuracy of order analysis.展开更多
Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or...Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or estimate of rotational speed over time, failure to isolate the contribution of crossing orders in the vicinity of the crossing time, large computational expense, end effects. In this work a new approach to the order tracking problem is taken. The Second Order Blind Identification (SOBI) algorithm is applied to synthesized data. The technique is shown to be very successful at isolating crossing orders and circumvents all of the above deficiencies. The method has its own restric-tions: multiple sensors are required and sensors must be mounted on a structure that responds quasi-statically to exci-tation of the rotational system.展开更多
This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which...This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.展开更多
The bounded consensus tracking problems of second-order multi-agent systems under directed networks with sam- pling delay are addressed in this paper. When the sampling delay is more than a sampling period, new protoc...The bounded consensus tracking problems of second-order multi-agent systems under directed networks with sam- pling delay are addressed in this paper. When the sampling delay is more than a sampling period, new protocols based on sampled-data control are proposed so that each agent can track the time-varying reference state of the virtual leader. By using the delay decomposition approach, the augmented matrix method, and the frequency domain analysis, necessary and sufficient conditions are obtained, which guarantee that the bounded consensus tracking is realized. Furthermore, some numerical simulations are presented to demonstrate the effectiveness of the theoretical results.展开更多
振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(emp...振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(empirical optimal envelope,EOE)的局部均值分解(local mean decomposition,LMD)和采用分段线性插值的计算阶次跟踪(computing order tracking,COT)算法相结合的故障诊断方法。首先,确定低通滤波器的截止频率和滤波阶数,对滚动轴承振动信号进行滤波,并对滤波后的包络信号进行COT,以获得角域平稳信号。然后,利用EOE_LMD对重采样后的平稳信号进行处理,得到若干乘积函数(product function,PF)分量。最后,通过计算各分量的信息熵和相关系数,选取合适的分量进行阶次分析,以判断变转速滚动轴承的故障类型。结果表明,该方法可以消除转速波动对故障特征提取的影响,在不同转速变化条件下对滚动轴承具有良好的故障诊断能力。展开更多
基金the financial support of this work by the National Natural Science Foundation of Hebei Province China under Grant E2020208052.
文摘With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the acquired vibration signals are often non-stationary and nonlinear,which are difficult to be processed by traditional analysis methods.In order to solve the noise reduction problem of multiple signals under variable speed,a COT-DCS method combining the Computed Order Tracking(COT)based on Chirplet Path Pursuit(CPP)and Distributed Compressed Sensing(DCS)is proposed.Firstly,the instantaneous frequency(IF)is extracted by CPP,and the speed is obtained by fitting.Then,the speed is used for equal angle sampling of time-domain signals,and angle-domain signals are obtained by COT without a tachometer to eliminate the nonstationarity,and the angledomain signals are compressed and reconstructed by DCS to achieve noise reduction of multiple signals.The accuracy of the CPP method is verified by simulated,experimental signals and compared with some existing IF extraction methods.The COT method also shows good signal stabilization ability through simulation and experiment.Finally,combined with the comparative test of the other two algorithms and four noise reduction effect indicators,the COT-DCS based on the CPP method combines the advantages of the two algorithms and has better noise reduction effect and stability.It is shown that this method is an effective multi-signal noise reduction method.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2008AA042408)
文摘Order analysis is one of the most important technique means of condition monitoring and fault diagnosis for rotary machinery.The traditional order analyses usually employ the Vold-Kalman filtering,however this method is confined to the expensive hardware equipments.This paper starts from Gabor transform and applies the Gabor time-frequency filtering to vibration signal.The order component's time-frequency coefficients are extracted by mask operation.The order component is reconstructed from the obtained coefficients.The following four key technologies,such as smoothing rotary speed curve,defining filtering band width,constructing the mask operation matrix and reconstructing signal component,are also deeply discussed.Moreover,the technique to smooth the rotary speed curve based on polynomial approximation,the method to determine filtering band width,the arithmetic to constitute mask array and the iterative algorithm to reconstruct signal based on minimum mean square error are specifically analyzed.The 4th order component is successfully gained by using the methods that Gabor time-frequency filter,and the validity and feasibility of this method are approved.This method can solve the problem of order tracking filter technologies which used to depend on hardware and efficiently improve the accuracy of order analysis.
文摘Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or estimate of rotational speed over time, failure to isolate the contribution of crossing orders in the vicinity of the crossing time, large computational expense, end effects. In this work a new approach to the order tracking problem is taken. The Second Order Blind Identification (SOBI) algorithm is applied to synthesized data. The technique is shown to be very successful at isolating crossing orders and circumvents all of the above deficiencies. The method has its own restric-tions: multiple sensors are required and sensors must be mounted on a structure that responds quasi-statically to exci-tation of the rotational system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,and 61403168)
文摘This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60874053 and 61034006)
文摘The bounded consensus tracking problems of second-order multi-agent systems under directed networks with sam- pling delay are addressed in this paper. When the sampling delay is more than a sampling period, new protocols based on sampled-data control are proposed so that each agent can track the time-varying reference state of the virtual leader. By using the delay decomposition approach, the augmented matrix method, and the frequency domain analysis, necessary and sufficient conditions are obtained, which guarantee that the bounded consensus tracking is realized. Furthermore, some numerical simulations are presented to demonstrate the effectiveness of the theoretical results.
文摘振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(empirical optimal envelope,EOE)的局部均值分解(local mean decomposition,LMD)和采用分段线性插值的计算阶次跟踪(computing order tracking,COT)算法相结合的故障诊断方法。首先,确定低通滤波器的截止频率和滤波阶数,对滚动轴承振动信号进行滤波,并对滤波后的包络信号进行COT,以获得角域平稳信号。然后,利用EOE_LMD对重采样后的平稳信号进行处理,得到若干乘积函数(product function,PF)分量。最后,通过计算各分量的信息熵和相关系数,选取合适的分量进行阶次分析,以判断变转速滚动轴承的故障类型。结果表明,该方法可以消除转速波动对故障特征提取的影响,在不同转速变化条件下对滚动轴承具有良好的故障诊断能力。