Previously the 5D homogeneous space-time metric was introduced with explicitly given projection operators in matrix form which map the 5D space-time manifold into a Lorentzian space-time. Based on this projection mode...Previously the 5D homogeneous space-time metric was introduced with explicitly given projection operators in matrix form which map the 5D space-time manifold into a Lorentzian space-time. Based on this projection model, vector field and spinor solutions are found to be expressible in terms of SU(2)xL and SU(3)xL, where L is the 4D Lorentz space-time group. The spinor solutions give the SU(2) leptonic states arising from space-time projection, whereas the SU(3) representation arises from conformal projection and gives the quarks, and due to gauge requirement leads to mesons and baryons. This process of mapping the 5D space-time manifold into the 4D space-time is at the basis of an analysis of the recent CERN experimental results, the presence of neutrino oscillations and the observed 125 GeV resonance in the p-p collisions, respectively. In fact, it is found that the spinor solution contains an oscillating phase, and the 125 GeV resonance is shown to be predictable, thereby 1) eliminating the need to introduce a Higgs vacuum, and 2) can be shown possibly to be an indicator for a missing heavy baryon octet.展开更多
In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors...In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors such as the earth rotation, earth tides are analyzed. The results show that: the giant earthquakes with the magnitude more than 8 occurred about every 24 years and the earthquakes with the magnitude more than 7 about every 7 years in Chinese mainland. The Western Kunlun Mountain M=8.1 earthquake exactly occurred at the expected time; The spatial distance show approximately the same distances between each two swarms. The earth rotation, earth tide, sun tide and sun magnetic field have played a role of modulation and triggering in the intensity. At last, the condi-tions for earthquake generation and occurrence are also discussed.展开更多
The state space, reconstruction is the major important quantitative index for describing non-linear chaotic time series. Based on the work of many scholars, such as: AT. H. Packard, F. Takens, M. Casdagli, J. F. Gibso...The state space, reconstruction is the major important quantitative index for describing non-linear chaotic time series. Based on the work of many scholars, such as: AT. H. Packard, F. Takens, M. Casdagli, J. F. Gibson, CHEN Yu-shu et al, the state space was reconstructed using the method of Legendre coordinate. Several different scaling regimes for lag time tau were identified. The influence for state space reconstruction of lag time tau was discussed. The result tells us that is a good practical method for state space reconstruction.展开更多
In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the...In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI...Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.展开更多
Wireless networks are characterized by nodes mobility, which makes the propagation environment time-varying and subject to fading. As a consequence, the statistical characteristics of the received signal vary continuo...Wireless networks are characterized by nodes mobility, which makes the propagation environment time-varying and subject to fading. As a consequence, the statistical characteristics of the received signal vary continuously, giving rise to a Doppler power spectral density (DPSD) that varies from one observation instant to the next. This paper is concerned with dynamical modeling of time-varying wireless fading channels, their estimation and parameter identification, and optimal power control from received signal measurement data. The wireless channel is characterized using a stochastic state-space form and derived by approximating the time-varying DPSD of the channel. The expected maximization and Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Moreover, we investigate a centralized optimal power control algorithm based on predictable strategies and employing the estimated channel parameters and states. The proposed models together with the estimation and power control algorithms are tested using experimental measurement data and the results are presented.展开更多
A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akai...A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akaike's AIC criterion.Some numerical results of gyro drift models are obtained for analysis of gyro system. As the trend and irregular components of the observed time series can be modeled simultaneously, it is statistically more accurate and efficient than that modeled separately.展开更多
Based on the Bayesian information criterion, this paper proposes the improved local linear prediction method to predict chaotic time series. This method uses spatial correlation and temporal correlation simultaneously...Based on the Bayesian information criterion, this paper proposes the improved local linear prediction method to predict chaotic time series. This method uses spatial correlation and temporal correlation simultaneously. Simulation results show that the improved local linear prediction method can effectively make multi-step and one-step prediction of chaotic time series and the multi-step prediction performance and one-step prediction accuracy of the improved local linear prediction method are superior to those of the traditional local linear prediction method.展开更多
The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz ...The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.展开更多
Properties of an operator representing the dynamical time in the extended parameterization invariant formulation of quantum mechanics are studied. It is shown that this time operator is given by a positive operator me...Properties of an operator representing the dynamical time in the extended parameterization invariant formulation of quantum mechanics are studied. It is shown that this time operator is given by a positive operator measure analogously to the quantities that are known to represent various measurable time operators. The relation between the dynamical time of the extended formulation and the best known example of the system time operator, i.e., for the free one- dimensional particle, is obtained.展开更多
Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform a...Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.展开更多
To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the ...To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.展开更多
Firstly, the Earth's gravitational field from the past Challenging Minisatellite Payload (CHAMP) mission is determined using the energy conservation principle, the combined error model of the cumulative geoid heigh...Firstly, the Earth's gravitational field from the past Challenging Minisatellite Payload (CHAMP) mission is determined using the energy conservation principle, the combined error model of the cumulative geoid height influenced by three instrument errors from the current Gravity Recovery and Climate Experiment (GRACE) and future GRACE Follow-On missions is established based on the semi-analytical method, and the Earth's gravitational field from the executed Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission is recovered by the space-time-wise approach. Secondly, the cumulative geoid height errors are 1.727 × 10^-1 m, 1.839 × 10^-1 m and 9.025 × 10^ -2 m at degrees 70,120 and 250 from the implemented three-stage satellite gravity missions consisting of CHAMP, GRACE and GOCE, which preferably accord with those from the existing earth gravity field models involving EIGEN-CHAMP03S, EICEN-GRACE02S and GO_CONS GCF 2 DIR R1. The cumulative geoid height error is 6.847 × 10 ^-2 m at degree 250 from the future GRACE Follow-On mission. Finally, the complementarity among the four-stage satellite gravity missions including CHAMP, GRACE, GOCE and GRACE Follow-On is demonstrated contrastively.展开更多
A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable ...A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable and its (q-order and 2q-order) time derivatives. This idea is demonstrated by using several well-known fractional-order chaotic systems. Finally, a synchronization scheme is investigated for this fractional-order chaotic system via a specific state variable and its (q-order and 2q-order) time derivatives. Some examples are used to illustrate the effectiveness of the proposed synchronization method.展开更多
In relativistic mechanics the time-like vector characterize the motion in spacetime with speed faster than the speed of light in vacuum c in which the line element ds2=c2dt2-dx2-dx2-dz2 is less than zero (where is inf...In relativistic mechanics the time-like vector characterize the motion in spacetime with speed faster than the speed of light in vacuum c in which the line element ds2=c2dt2-dx2-dx2-dz2 is less than zero (where is infinitesimal change in time, and are infinitesimal change in space), thus the time in relativistic mechanics can instantaneously flow [1], however in quantum mechanics although the time is treated as unobservable parameter (without any Hermitian observable operator have engine-value equivalent to time) any two physical quantity described by two non-commuting observable operatorsand fulfill , the knowledge of one immediately produce the knowledge of the other [2], thus in quantum mechanics if two particles interacted in finite temporal epoch and then separated in space the gaining of knowledge by the local measurement of physical quantity runs on one them (for example the measurement of spin direction of one particle using Stern-Gerlach experiment) immediately produce the knowledge of the complementary physical quantity of the other particle (for example the opposite spin direction of the other particle), this simply called quantum entanglement the concept that so much advanced after publication of the Jon Bell’s 1964 celebrated paper [3] in which he illustrated that we can add parameters to quantum mechanics to determine the results of individual measurements, without changing the statistical predictions, and then he conclude “there must be a mechanism whereby the setting of one measuring device can influence the reading of another instrument, however remote. Moreover, the signal involved must propagate instantaneously so that such a theory could not be Lorentz invariant”. The question now what these signals that can propagate instantaneously? The answer in this paper will be the time signals field which is defined for each constituent matter particle M and at each space point P as the measure of the total length of all occupation and leaving epochs of P by M which is representing a sequence function compactly supported only at the space point occupied by it and indexed by the number of occupation epochs of P by M, thus the flow of this time signal field from the far future to near future through the present to the near past to the far past inferable by the flow of matter particles constituting the system(such as sun, moon earth and clocks hands). Thus the present will represent in this paper a local absolute feature of time signals field defined at each space point as the set of all occupation epochs of it by matter particle, however the past and future will represent relativistic non-local features of the time signal field defined at each space point as a set of all leaving epochs between each two sequential occupation epochs, so the future after one occupation epoch is representing a past of the next one. Thus according to current representation of time, the two Mc-Taggard’s A and B series of time [4] will exist together as temporal set and then the time is real, the A-series in current theory is a set of all occupation and leaving epochs of space point by the matter particle that is consisting of the present, past and future epochs, and the B-series is the set of all leaving epochs of space points between each two sequential occupation epochs which are taking position before or after the discrete occupation epochs between them and then before or after each other.展开更多
In this paper, three types of modeling of diffusion equations for price changing of commodity are studied. In which, the partial derivatives of price of commodity respected to time on the left hand side are integer-de...In this paper, three types of modeling of diffusion equations for price changing of commodity are studied. In which, the partial derivatives of price of commodity respected to time on the left hand side are integer-derivative, fractal derivative, and fractional derivative respectively;while just a second order derivative respected to space is considered on the right hand side. The solutions of these diffusion equations are obtained by method of departing variables and initial boundary conditions, by translation of variables, and by translation of operators. The definitions of order of commodity x and the distance between commodity?xi and xj are defined as [1]. Examples of calculation of price of pork, beef and mutton mainly due to price raising of pork in 2007-07 to 2008-02 inChina are given with same market data as [1]. Conclusion is made.展开更多
Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscilla...Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscillations, caused by weak but long-lasting and frequency-stable influences, create the conditions for ultrasonic wave’s generation in the layers, which are capable of destroying thickened oil membranes in reservoir cracks. For fractured-porous reservoirs in the process of exploitation by the method of water high-pressure oil displacement, the possibility of intensifying ultrasonic vibrations can have an important technological significance. Even a very weak ultrasound can destroy, over a long period of time, the viscous oil membranes formed in the cracks between the blocks, which can be the reason for lowering the permeability of the layers and increasing the oil recovery. To describe these effects, it is necessary to consider the wave process in a hierarchically blocky environment and theoretically simulate the mechanism of the appearance of self-oscillations under the action of relaxation shear stresses. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many-phase medium is suggested.展开更多
文摘Previously the 5D homogeneous space-time metric was introduced with explicitly given projection operators in matrix form which map the 5D space-time manifold into a Lorentzian space-time. Based on this projection model, vector field and spinor solutions are found to be expressible in terms of SU(2)xL and SU(3)xL, where L is the 4D Lorentz space-time group. The spinor solutions give the SU(2) leptonic states arising from space-time projection, whereas the SU(3) representation arises from conformal projection and gives the quarks, and due to gauge requirement leads to mesons and baryons. This process of mapping the 5D space-time manifold into the 4D space-time is at the basis of an analysis of the recent CERN experimental results, the presence of neutrino oscillations and the observed 125 GeV resonance in the p-p collisions, respectively. In fact, it is found that the spinor solution contains an oscillating phase, and the 125 GeV resonance is shown to be predictable, thereby 1) eliminating the need to introduce a Higgs vacuum, and 2) can be shown possibly to be an indicator for a missing heavy baryon octet.
基金State Key Project of Science and Technology of China (2001BA601B01) and State 863 Plan of China.
文摘In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors such as the earth rotation, earth tides are analyzed. The results show that: the giant earthquakes with the magnitude more than 8 occurred about every 24 years and the earthquakes with the magnitude more than 7 about every 7 years in Chinese mainland. The Western Kunlun Mountain M=8.1 earthquake exactly occurred at the expected time; The spatial distance show approximately the same distances between each two swarms. The earth rotation, earth tide, sun tide and sun magnetic field have played a role of modulation and triggering in the intensity. At last, the condi-tions for earthquake generation and occurrence are also discussed.
基金the National Natural Science Foundation of China(19990510)
文摘The state space, reconstruction is the major important quantitative index for describing non-linear chaotic time series. Based on the work of many scholars, such as: AT. H. Packard, F. Takens, M. Casdagli, J. F. Gibson, CHEN Yu-shu et al, the state space was reconstructed using the method of Legendre coordinate. Several different scaling regimes for lag time tau were identified. The influence for state space reconstruction of lag time tau was discussed. The result tells us that is a good practical method for state space reconstruction.
基金Project supported by the Science and Technology Program of Xi’an City,China(Grant No.CXY1352WL34)
文摘In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
基金supported by the Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(N200904)the Nanjing University of Aeronautics and Astronautics (NUAA) Research Funding (NS2010113)the National Natural Science Foundation of China (61172077)
文摘Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.
文摘Wireless networks are characterized by nodes mobility, which makes the propagation environment time-varying and subject to fading. As a consequence, the statistical characteristics of the received signal vary continuously, giving rise to a Doppler power spectral density (DPSD) that varies from one observation instant to the next. This paper is concerned with dynamical modeling of time-varying wireless fading channels, their estimation and parameter identification, and optimal power control from received signal measurement data. The wireless channel is characterized using a stochastic state-space form and derived by approximating the time-varying DPSD of the channel. The expected maximization and Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Moreover, we investigate a centralized optimal power control algorithm based on predictable strategies and employing the estimated channel parameters and states. The proposed models together with the estimation and power control algorithms are tested using experimental measurement data and the results are presented.
文摘A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akaike's AIC criterion.Some numerical results of gyro drift models are obtained for analysis of gyro system. As the trend and irregular components of the observed time series can be modeled simultaneously, it is statistically more accurate and efficient than that modeled separately.
文摘Based on the Bayesian information criterion, this paper proposes the improved local linear prediction method to predict chaotic time series. This method uses spatial correlation and temporal correlation simultaneously. Simulation results show that the improved local linear prediction method can effectively make multi-step and one-step prediction of chaotic time series and the multi-step prediction performance and one-step prediction accuracy of the improved local linear prediction method are superior to those of the traditional local linear prediction method.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61174001)
文摘The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.
基金Project supported by the Ministry of Science and Education of the Republic of Serbia (Grant Nos. 171017, 171028, and 171006)
文摘Properties of an operator representing the dynamical time in the extended parameterization invariant formulation of quantum mechanics are studied. It is shown that this time operator is given by a positive operator measure analogously to the quantities that are known to represent various measurable time operators. The relation between the dynamical time of the extended formulation and the best known example of the system time operator, i.e., for the free one- dimensional particle, is obtained.
文摘Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.
文摘To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences for Distinguished Young Scholar(KZCX2-EW-QN114)the National Natural Science Foundation of China(41004006,41131067,11173049 and 41274041)+7 种基金the Merit-based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars(Z01101)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(11-01-02)the Open Research Fund Program of the Key Laboratory of Geo-Informatics of National Administration of Surveying,Mapping and Geoinformation of China(201322)the Open Research Fund Program of the State Key Laboratory of Geoinformation Engineering,China(SKLGIE2013-M-1-5)the Main Direction Program of Institute of Geodesy and Geophysics,Chinese Academy of Sciences(Y309451045)the Research Fund Program of State Key Laboratory of Geodesy and Earth's Dynamics,China(Y309491050)the Research Fund of the National Civilian Space Infrastructure Project(Y419341034)the Research Fund of the Lu Jiaxi Young Talent and the Youth Innovation Promotion Association of Chinese Academy of Science(Y305171017)
文摘Firstly, the Earth's gravitational field from the past Challenging Minisatellite Payload (CHAMP) mission is determined using the energy conservation principle, the combined error model of the cumulative geoid height influenced by three instrument errors from the current Gravity Recovery and Climate Experiment (GRACE) and future GRACE Follow-On missions is established based on the semi-analytical method, and the Earth's gravitational field from the executed Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission is recovered by the space-time-wise approach. Secondly, the cumulative geoid height errors are 1.727 × 10^-1 m, 1.839 × 10^-1 m and 9.025 × 10^ -2 m at degrees 70,120 and 250 from the implemented three-stage satellite gravity missions consisting of CHAMP, GRACE and GOCE, which preferably accord with those from the existing earth gravity field models involving EIGEN-CHAMP03S, EICEN-GRACE02S and GO_CONS GCF 2 DIR R1. The cumulative geoid height error is 6.847 × 10 ^-2 m at degree 250 from the future GRACE Follow-On mission. Finally, the complementarity among the four-stage satellite gravity missions including CHAMP, GRACE, GOCE and GRACE Follow-On is demonstrated contrastively.
文摘A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable and its (q-order and 2q-order) time derivatives. This idea is demonstrated by using several well-known fractional-order chaotic systems. Finally, a synchronization scheme is investigated for this fractional-order chaotic system via a specific state variable and its (q-order and 2q-order) time derivatives. Some examples are used to illustrate the effectiveness of the proposed synchronization method.
文摘In relativistic mechanics the time-like vector characterize the motion in spacetime with speed faster than the speed of light in vacuum c in which the line element ds2=c2dt2-dx2-dx2-dz2 is less than zero (where is infinitesimal change in time, and are infinitesimal change in space), thus the time in relativistic mechanics can instantaneously flow [1], however in quantum mechanics although the time is treated as unobservable parameter (without any Hermitian observable operator have engine-value equivalent to time) any two physical quantity described by two non-commuting observable operatorsand fulfill , the knowledge of one immediately produce the knowledge of the other [2], thus in quantum mechanics if two particles interacted in finite temporal epoch and then separated in space the gaining of knowledge by the local measurement of physical quantity runs on one them (for example the measurement of spin direction of one particle using Stern-Gerlach experiment) immediately produce the knowledge of the complementary physical quantity of the other particle (for example the opposite spin direction of the other particle), this simply called quantum entanglement the concept that so much advanced after publication of the Jon Bell’s 1964 celebrated paper [3] in which he illustrated that we can add parameters to quantum mechanics to determine the results of individual measurements, without changing the statistical predictions, and then he conclude “there must be a mechanism whereby the setting of one measuring device can influence the reading of another instrument, however remote. Moreover, the signal involved must propagate instantaneously so that such a theory could not be Lorentz invariant”. The question now what these signals that can propagate instantaneously? The answer in this paper will be the time signals field which is defined for each constituent matter particle M and at each space point P as the measure of the total length of all occupation and leaving epochs of P by M which is representing a sequence function compactly supported only at the space point occupied by it and indexed by the number of occupation epochs of P by M, thus the flow of this time signal field from the far future to near future through the present to the near past to the far past inferable by the flow of matter particles constituting the system(such as sun, moon earth and clocks hands). Thus the present will represent in this paper a local absolute feature of time signals field defined at each space point as the set of all occupation epochs of it by matter particle, however the past and future will represent relativistic non-local features of the time signal field defined at each space point as a set of all leaving epochs between each two sequential occupation epochs, so the future after one occupation epoch is representing a past of the next one. Thus according to current representation of time, the two Mc-Taggard’s A and B series of time [4] will exist together as temporal set and then the time is real, the A-series in current theory is a set of all occupation and leaving epochs of space point by the matter particle that is consisting of the present, past and future epochs, and the B-series is the set of all leaving epochs of space points between each two sequential occupation epochs which are taking position before or after the discrete occupation epochs between them and then before or after each other.
文摘In this paper, three types of modeling of diffusion equations for price changing of commodity are studied. In which, the partial derivatives of price of commodity respected to time on the left hand side are integer-derivative, fractal derivative, and fractional derivative respectively;while just a second order derivative respected to space is considered on the right hand side. The solutions of these diffusion equations are obtained by method of departing variables and initial boundary conditions, by translation of variables, and by translation of operators. The definitions of order of commodity x and the distance between commodity?xi and xj are defined as [1]. Examples of calculation of price of pork, beef and mutton mainly due to price raising of pork in 2007-07 to 2008-02 inChina are given with same market data as [1]. Conclusion is made.
文摘Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscillations, caused by weak but long-lasting and frequency-stable influences, create the conditions for ultrasonic wave’s generation in the layers, which are capable of destroying thickened oil membranes in reservoir cracks. For fractured-porous reservoirs in the process of exploitation by the method of water high-pressure oil displacement, the possibility of intensifying ultrasonic vibrations can have an important technological significance. Even a very weak ultrasound can destroy, over a long period of time, the viscous oil membranes formed in the cracks between the blocks, which can be the reason for lowering the permeability of the layers and increasing the oil recovery. To describe these effects, it is necessary to consider the wave process in a hierarchically blocky environment and theoretically simulate the mechanism of the appearance of self-oscillations under the action of relaxation shear stresses. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many-phase medium is suggested.