In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication q...In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators.展开更多
Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at...Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre-or postsynaptic TrkB resulting in the strengthening of synapses,reflected by long-term potentiation.Postsynaptically,the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca^(2+)/calmodulin-dependent protein kinaseⅡand phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation.In this review,we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders.A reduction of TrkB signaling has been observed in neurodegenerative disorders,such as Alzheimer's disease and Huntington's disease,and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression.Treatment with brain-derived neurotrophic factor is problematic,due to poor pharmacokinetics,low brain penetration,and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform.Although TrkB agonists and antibodies that activate TrkB are being intensively investigated,they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions.Targeting TrkB–postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.展开更多
For Italian textile machinery sector,2024 has begun without anything seemingly special.The first quarter has seen the orders index,as reported by the Economics Department of ACIMIT-the Association of Italian Textile M...For Italian textile machinery sector,2024 has begun without anything seemingly special.The first quarter has seen the orders index,as reported by the Economics Department of ACIMIT-the Association of Italian Textile Machinery Manufacturers-remain stationary compared to the same period the previous year.In absolute terms,the index came in at 61.2 points(basis:2021=100).展开更多
In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial meth...In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.展开更多
Finding clusters based on density represents a significant class of clustering algorithms.These methods can discover clusters of various shapes and sizes.The most studied algorithm in this class is theDensity-Based Sp...Finding clusters based on density represents a significant class of clustering algorithms.These methods can discover clusters of various shapes and sizes.The most studied algorithm in this class is theDensity-Based Spatial Clustering of Applications with Noise(DBSCAN).It identifies clusters by grouping the densely connected objects into one group and discarding the noise objects.It requires two input parameters:epsilon(fixed neighborhood radius)and MinPts(the lowest number of objects in epsilon).However,it can’t handle clusters of various densities since it uses a global value for epsilon.This article proposes an adaptation of the DBSCAN method so it can discover clusters of varied densities besides reducing the required number of input parameters to only one.Only user input in the proposed method is the MinPts.Epsilon on the other hand,is computed automatically based on statistical information of the dataset.The proposed method finds the core distance for each object in the dataset,takes the average of these distances as the first value of epsilon,and finds the clusters satisfying this density level.The remaining unclustered objects will be clustered using a new value of epsilon that equals the average core distances of unclustered objects.This process continues until all objects have been clustered or the remaining unclustered objects are less than 0.006 of the dataset’s size.The proposed method requires MinPts only as an input parameter because epsilon is computed from data.Benchmark datasets were used to evaluate the effectiveness of the proposed method that produced promising results.Practical experiments demonstrate that the outstanding ability of the proposed method to detect clusters of different densities even if there is no separation between them.The accuracy of the method ranges from 92%to 100%for the experimented datasets.展开更多
The one-band t–J model captures strong correlations in cuprate high-temperature superconductors.It accounts for the various intertwined spin and charge orders,and the superconductivity in the phase diagrams.To see th...The one-band t–J model captures strong correlations in cuprate high-temperature superconductors.It accounts for the various intertwined spin and charge orders,and the superconductivity in the phase diagrams.To see the correlation effect on the intertwined orders,we implement the density matrix renormalization group method to simulate the t–J model in a small J case with t/J=10,which is in a deeper Mott region than that with t/J?3 in cuprate superconducting compounds.We examine the results on a six-leg lattice with both the nearest and next-nearest-neighbor hoppings and antiferromagnetic coupling,and find the absence of superconductivity and enhanced intertwined spin and charge orders in the phase diagram.Besides the stripe phases,we find a new SDW+CDW phase in which the spin modulation is a(π,π)antiferromagnetism,while the wavelength of the charge modulation is shorter than that of the stripe phases.Our results suggest the enhanced intertwined orders and suppressed superconductivity in the deep Mott region.展开更多
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri...The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.展开更多
AIM: To estimate the prevalence and identify the risk factors for metabolic bone disease in patients with cirrhosis. METHODS: The study was performed on 72 Indian patients with cirrhosis (63 male, 9 female; aged 〈...AIM: To estimate the prevalence and identify the risk factors for metabolic bone disease in patients with cirrhosis. METHODS: The study was performed on 72 Indian patients with cirrhosis (63 male, 9 female; aged 〈 50 years). Etiology of cirrhosis was alcoholism (n = 37), hepatitis B (n = 25) and hepatitis C (n = 10). Twenty-three patients belonged to Child class A, while 39 were in class B and 10 in class C. Secondary causes for metabolic bone disease and osteoporosis were ruled out. Sunlight exposure, physical activity and dietary constituents were calculated. Complete metabolic profiles were derived, and bone mineral density (BMD) was measured using dual energy X ray absorptiometry. Low BMD was defined as a Z score below -2. RESULTS: Low BMD was found in 68% of patients. Lumbar spine was the most frequently and severely affected site. Risk factors for low BMD included low physical activity, decreased sunlight exposure, and low lean body mass. Calcium intake was adequate, with unfavorable calcium: protein ratio and calcium: phosphorus ratio. Vitamin D deficiency was highly prevalent (92%). There was a high incidence of hypogonadism (41%). Serum estradiol level was elevated significantly in patients with normal BMD. Insulin-like growth factor (IGF) 1 and IGF binding protein 3 levels were below the age-related normal range in both groups. IGF-1 was significantly lower in patients with low BMD. Serum osteocalcin level was low (68%) and urinary deoxypyridinoline to creatinine ratio was high (79%), which demonstrated low bone formation with high resorption. CONCLUSION: Patients with cirrhosis have low BMD. Contributory factors are reduced physical activity, low lean body mass, vitamin D deficiency and hypogonadism and low IGF-1 level.展开更多
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H...The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.展开更多
The effect of evolutionary history on wood density variation may play an important role in shaping variation in wood density,but this has largely not been tested.Using a comprehensive global dataset including 27,297 m...The effect of evolutionary history on wood density variation may play an important role in shaping variation in wood density,but this has largely not been tested.Using a comprehensive global dataset including 27,297 measurements of wood density from 2621 tree species worldwide,we test the hypothesis that the legacy of evolutionary history plays an important role in driving the variation of wood density among tree species.We assessed phylogenetic signal in different taxonomic(e.g.,angiosperms and gymnosperms)and ecological(e.g.,tropical,temperate,and boreal)groups of tree species,explored the biogeographical and phylogenetic patterns of wood density,and quantified the relative importance of current environmental factors(e.g.,climatic and soil variables)and evolutionary history(i.e.,phylogenetic relatedness among species and lineages)in driving global wood density variation.We found that wood density displayed a significant phylogenetic signal.Wood density differed among different biomes and climatic zones,with higher mean values of wood density in relatively drier regions(highest in subtropical desert).Our study revealed that at a global scale,for angiosperms and gymnosperms combined,phylogeny and species(representing the variance explained by taxonomy and not direct explained by long-term evolution process)explained 84.3%and 7.7%of total wood density variation,respectively,whereas current environment explained 2.7%of total wood density variation when phylogeny and species were taken into account.When angiosperms and gymnosperms were considered separately,the three proportions of explained variation are,respectively,84.2%,7.5%and 6.7%for angiosperms,and 45.7%,21.3%and 18.6%for gymnosperms.Our study shows that evolutionary history outpaced current environmental factors in shaping global variation in wood density.展开更多
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process...Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.展开更多
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c...Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.展开更多
Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsi...Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.展开更多
High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillim...High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.展开更多
Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pret...Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.展开更多
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrate...Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.展开更多
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improv...In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance.The breakdown voltage(BV)is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92μm.A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V.The maximum oscillation frequency(f_(max))and unity current gain cut-off frequency(f_(t))of the AlGaN/GaN HEMTs exceed 30 and 20 GHz,respectively.The results demonstrate the potential of AlGaN/GaN HEMTs on freestanding GaN substrates for microwave power applications.展开更多
基金sponsored by the National Natural Science Foundation,Youth Foundation of China,Grant/Award Number:51607146Sichuan Natural Sciences Fund,Grant/Award Number:2023NSFSC0295。
文摘In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators.
基金supported by Postdoc Fellowship from the Foundation for Angelman Syndrome Therapeutics(FT2022-005 to JM,PD2023-001 to XY,and FT2024-001 to YAH)STTR R41 MH118747(to JM)。
文摘Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre-or postsynaptic TrkB resulting in the strengthening of synapses,reflected by long-term potentiation.Postsynaptically,the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca^(2+)/calmodulin-dependent protein kinaseⅡand phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation.In this review,we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders.A reduction of TrkB signaling has been observed in neurodegenerative disorders,such as Alzheimer's disease and Huntington's disease,and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression.Treatment with brain-derived neurotrophic factor is problematic,due to poor pharmacokinetics,low brain penetration,and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform.Although TrkB agonists and antibodies that activate TrkB are being intensively investigated,they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions.Targeting TrkB–postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
文摘For Italian textile machinery sector,2024 has begun without anything seemingly special.The first quarter has seen the orders index,as reported by the Economics Department of ACIMIT-the Association of Italian Textile Machinery Manufacturers-remain stationary compared to the same period the previous year.In absolute terms,the index came in at 61.2 points(basis:2021=100).
基金supported by the Natural Science Foundation of Jilin Province(No.20220101017JC)National Natural Science Foundation of China(No.11675063)Key Laboratory of Nuclear Data Foundation(JCKY2020201C157).
文摘In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.
基金The author extends his appreciation to theDeputyship forResearch&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/17758).
文摘Finding clusters based on density represents a significant class of clustering algorithms.These methods can discover clusters of various shapes and sizes.The most studied algorithm in this class is theDensity-Based Spatial Clustering of Applications with Noise(DBSCAN).It identifies clusters by grouping the densely connected objects into one group and discarding the noise objects.It requires two input parameters:epsilon(fixed neighborhood radius)and MinPts(the lowest number of objects in epsilon).However,it can’t handle clusters of various densities since it uses a global value for epsilon.This article proposes an adaptation of the DBSCAN method so it can discover clusters of varied densities besides reducing the required number of input parameters to only one.Only user input in the proposed method is the MinPts.Epsilon on the other hand,is computed automatically based on statistical information of the dataset.The proposed method finds the core distance for each object in the dataset,takes the average of these distances as the first value of epsilon,and finds the clusters satisfying this density level.The remaining unclustered objects will be clustered using a new value of epsilon that equals the average core distances of unclustered objects.This process continues until all objects have been clustered or the remaining unclustered objects are less than 0.006 of the dataset’s size.The proposed method requires MinPts only as an input parameter because epsilon is computed from data.Benchmark datasets were used to evaluate the effectiveness of the proposed method that produced promising results.Practical experiments demonstrate that the outstanding ability of the proposed method to detect clusters of different densities even if there is no separation between them.The accuracy of the method ranges from 92%to 100%for the experimented datasets.
基金the National Key R&D Program of China(Grant No.2022YFA1403700)the National Natural Science Foundation of China(Grant No.12141402)+2 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.ZDSYS20190902092905285)Guangdong Basic and Applied Basic Research Foundation(Grant No.2020B1515120100)Center for Computational Science and Engineering at Southern University of Science and Technology。
文摘The one-band t–J model captures strong correlations in cuprate high-temperature superconductors.It accounts for the various intertwined spin and charge orders,and the superconductivity in the phase diagrams.To see the correlation effect on the intertwined orders,we implement the density matrix renormalization group method to simulate the t–J model in a small J case with t/J=10,which is in a deeper Mott region than that with t/J?3 in cuprate superconducting compounds.We examine the results on a six-leg lattice with both the nearest and next-nearest-neighbor hoppings and antiferromagnetic coupling,and find the absence of superconductivity and enhanced intertwined spin and charge orders in the phase diagram.Besides the stripe phases,we find a new SDW+CDW phase in which the spin modulation is a(π,π)antiferromagnetism,while the wavelength of the charge modulation is shorter than that of the stripe phases.Our results suggest the enhanced intertwined orders and suppressed superconductivity in the deep Mott region.
基金supported by the National Natural Science Foundation of China(Grant Nos.42175099,42027804,42075073)the Innovative Project of Postgraduates in Jiangsu Province in 2023(Grant No.KYCX23_1319)+3 种基金supported by the National Natural Science Foundation of China(Grant No.42205080)the Natural Science Foundation of Sichuan(Grant No.2023YFS0442)the Research Fund of Civil Aviation Flight University of China(Grant No.J2022-037)supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(Earth Lab)。
文摘The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.
基金Supported by Corpus generated by Department of Endocrinology, KEM Hospital, Mumbai, India
文摘AIM: To estimate the prevalence and identify the risk factors for metabolic bone disease in patients with cirrhosis. METHODS: The study was performed on 72 Indian patients with cirrhosis (63 male, 9 female; aged 〈 50 years). Etiology of cirrhosis was alcoholism (n = 37), hepatitis B (n = 25) and hepatitis C (n = 10). Twenty-three patients belonged to Child class A, while 39 were in class B and 10 in class C. Secondary causes for metabolic bone disease and osteoporosis were ruled out. Sunlight exposure, physical activity and dietary constituents were calculated. Complete metabolic profiles were derived, and bone mineral density (BMD) was measured using dual energy X ray absorptiometry. Low BMD was defined as a Z score below -2. RESULTS: Low BMD was found in 68% of patients. Lumbar spine was the most frequently and severely affected site. Risk factors for low BMD included low physical activity, decreased sunlight exposure, and low lean body mass. Calcium intake was adequate, with unfavorable calcium: protein ratio and calcium: phosphorus ratio. Vitamin D deficiency was highly prevalent (92%). There was a high incidence of hypogonadism (41%). Serum estradiol level was elevated significantly in patients with normal BMD. Insulin-like growth factor (IGF) 1 and IGF binding protein 3 levels were below the age-related normal range in both groups. IGF-1 was significantly lower in patients with low BMD. Serum osteocalcin level was low (68%) and urinary deoxypyridinoline to creatinine ratio was high (79%), which demonstrated low bone formation with high resorption. CONCLUSION: Patients with cirrhosis have low BMD. Contributory factors are reduced physical activity, low lean body mass, vitamin D deficiency and hypogonadism and low IGF-1 level.
基金financial support of the National Natural Science Foundation of China(U21A20218 and 32101857)the‘Double First-Class’Key Scientific Research Project of Education Department in Gansu Province,China(GSSYLXM-02)+1 种基金the Fuxi Young Talents Fund of Gansu Agricultural University,China(Gaufx03Y10)the“Innovation Star”Program of Graduate Students in 2023 of Gansu Province,China(2023CXZX681)。
文摘The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.
基金supported by the Scientific Research Project of Anhui Province(2022AH050873)the State Key Laboratory of Subtropical Silviculture(SKLSS-KF2023-08)+1 种基金the Provincial Natural Resources Fund(1908085QC140)the National Key R&D Program of China(2018YFD1000600).
文摘The effect of evolutionary history on wood density variation may play an important role in shaping variation in wood density,but this has largely not been tested.Using a comprehensive global dataset including 27,297 measurements of wood density from 2621 tree species worldwide,we test the hypothesis that the legacy of evolutionary history plays an important role in driving the variation of wood density among tree species.We assessed phylogenetic signal in different taxonomic(e.g.,angiosperms and gymnosperms)and ecological(e.g.,tropical,temperate,and boreal)groups of tree species,explored the biogeographical and phylogenetic patterns of wood density,and quantified the relative importance of current environmental factors(e.g.,climatic and soil variables)and evolutionary history(i.e.,phylogenetic relatedness among species and lineages)in driving global wood density variation.We found that wood density displayed a significant phylogenetic signal.Wood density differed among different biomes and climatic zones,with higher mean values of wood density in relatively drier regions(highest in subtropical desert).Our study revealed that at a global scale,for angiosperms and gymnosperms combined,phylogeny and species(representing the variance explained by taxonomy and not direct explained by long-term evolution process)explained 84.3%and 7.7%of total wood density variation,respectively,whereas current environment explained 2.7%of total wood density variation when phylogeny and species were taken into account.When angiosperms and gymnosperms were considered separately,the three proportions of explained variation are,respectively,84.2%,7.5%and 6.7%for angiosperms,and 45.7%,21.3%and 18.6%for gymnosperms.Our study shows that evolutionary history outpaced current environmental factors in shaping global variation in wood density.
基金supported by the National Key Research and Development Program of China[grant No.2018YFB2001800]National Natural Science Foundation of China[grant No.51871184]Dalian High-level Talents Innovation Support Program[grant No.2021RD06]。
文摘Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.
基金Ministry of Trade,Industry and Energy,Grant/Award Number:20010095Korea Evaluation Institute of Industrial Technology,Grant/Award Number:20012341。
文摘Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.
基金the European Research Council starting grant “Cell Hybridge” for financial support under the Horizon2020 framework program (Grant#637308)the Province of Limburg for support and funding
文摘Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.
基金support of the National Natural Science Foundation of China(Nos.U20A6001,12002190,11972207,and 11921002)the Fundamental Research Funds for the Central Universities,China(No.SWUKQ22029)the Chongqing Natural Science Foundation of China(No.CSTB2022NSCQ-MSX1635).
文摘High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.
基金supported the National Natural Science Foundation of China (42022059,41888101)the Strategic Priority Research Program of the Chinese Academy of Sciences,China (Grant No.XDB26020000)+1 种基金the Key Research Program of the Institute of Geology and Geophysics (CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team (JCTD-2021-05).
文摘Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.
基金supported by the Chongqing Science and Technology CommitteeNatural Science Foundation of Chongqing,No.cstc2021jcyj-msxmX0065 (to YL)。
文摘Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
文摘In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance.The breakdown voltage(BV)is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92μm.A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V.The maximum oscillation frequency(f_(max))and unity current gain cut-off frequency(f_(t))of the AlGaN/GaN HEMTs exceed 30 and 20 GHz,respectively.The results demonstrate the potential of AlGaN/GaN HEMTs on freestanding GaN substrates for microwave power applications.