Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channe...Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes.展开更多
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency ...A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters.展开更多
We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear ...We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.展开更多
First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of ...First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of parallel experiments have been conducted to systematically test the influence of some important parallel control parameters on the performance of the algorithm. A lot of experimental results are obtained and we make some analysis and explanations to them.展开更多
This work presents a stochastic Chebyshev-Picard iteration method to efficiently solve nonlinear differential equations with random inputs.If the nonlinear problem involves uncertainty,we need to characterize the unce...This work presents a stochastic Chebyshev-Picard iteration method to efficiently solve nonlinear differential equations with random inputs.If the nonlinear problem involves uncertainty,we need to characterize the uncer-tainty by using a few random variables.The nonlinear stochastic problems require solving the nonlinear system for a large number of samples in the stochastic space to quantify the statistics of the system of response and explore the uncertainty quantification.The computational cost is very expensive.To overcome the difficulty,a low rank approximation is introduced to the solution of the corresponding nonlinear problem and admits a variable-separation form in terms of stochastic basis functions and deterministic basis functions.No it-eration is performed at each enrichment step.These basis functions are model-oriented and involve offline computation.To efficiently identify the stochastic basis functions,we utilize the greedy algorithm to select some optimal sam-ples.Then the modified Chebyshev-Picard iteration method is used to solve the nonlinear system at the selected optimal samples,the solutions of which are used to train the deterministic basis functions.With the deterministic basis functions,we can obtain the corresponding stochastic basis functions by solv-ing linear differential systems.The computation of the stochastic Chebyshev-Picard method decomposes into an offline phase and an online phase.This is very desirable for scientific computation.Several examples are presented to illustrate the efficacy of the proposed method for different nonlinear differential equations.展开更多
Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D G...Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show ...In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show that this method is powerful for this type of equations.展开更多
In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and t...In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and the remainders have been estimated.展开更多
The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value...The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value methods.In this paper,we propose a new circulant preconditioner to speed up the convergence rate of the GMRES method, which is a convex linear combination of P-circulant and Strang-type circulant preconditioners. Theoretical and practical arguments are given to show that this preconditioner is feasible and effective in some cases.展开更多
This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In par...This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In particular, we employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but bypass the standard back-propagation algorithm for updating the intrinsic weights. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial or boundary conditions and contains no adjustable parameters. The second part involves a feed-forward neural network to be trained to satisfy the differential equation. Numerous works have appeared in recent times regarding the solution of differential equations using ANN, however majority of these employed a single hidden layer perceptron model, incorporating a back-propagation algorithm for weight updation. For the homogeneous case, we assume a solution in exponential form and compute a polynomial approximation using statistical regression. From here we pick the unknown coefficients as the weights from input layer to hidden layer of the associated neural network trial solution. To get the weights from hidden layer to the output layer, we form algebraic equations incorporating the default sign of the differential equations. We then apply the Gaussian Radial Basis function (GRBF) approximation model to achieve our objective. The weights obtained in this manner need not be adjusted. We proceed to develop a Neural Network algorithm using MathCAD software, which enables us to slightly adjust the intrinsic biases. We compare the convergence and the accuracy of our results with analytic solutions, as well as well-known numerical methods and obtain satisfactory results for our example ODE problems.展开更多
In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation....In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation. This numerical integrator has been tested for desirable qualities like stability, convergence and consistency. The discrete models have been used for a numerical experiment which makes us conclude that the schemes are suitable for the solution of first order ordinary differential equation.展开更多
A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th...A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.展开更多
In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also...In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also several numerical examples are included.展开更多
In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential d...In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.展开更多
Biforations of an ordinary differential equation with two-point boundary value condition are investigated. Using the singularity theory based on the Liapunov-Schmidt reduction, we have obtained some characterization r...Biforations of an ordinary differential equation with two-point boundary value condition are investigated. Using the singularity theory based on the Liapunov-Schmidt reduction, we have obtained some characterization results.展开更多
Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) ...Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.展开更多
By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help o...By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.展开更多
This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
基金supported in part by the National Key Research and Development Program of China(Grant No.2020YFB1805005)in part by the National Natural Science Foundation of China(Grant No.62031019)in part by the European Commission through the H2020-MSCA-ITN META WIRELESS Research Project under Grant 956256。
文摘Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes.
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
文摘A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters.
基金the National Natural Science Foundation of China(No.70 0 710 42 and No.60 0 73 0 43 )
文摘We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.
基金Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
文摘First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of parallel experiments have been conducted to systematically test the influence of some important parallel control parameters on the performance of the algorithm. A lot of experimental results are obtained and we make some analysis and explanations to them.
基金supported by the National Natural Science Foundation of China (Grant No.12101217)by the China Postdoctoral Science Foundation (Grant No.2022M713875)by the Natural Science Foundation of Hunan Province (Grant No.2022J40113).
文摘This work presents a stochastic Chebyshev-Picard iteration method to efficiently solve nonlinear differential equations with random inputs.If the nonlinear problem involves uncertainty,we need to characterize the uncer-tainty by using a few random variables.The nonlinear stochastic problems require solving the nonlinear system for a large number of samples in the stochastic space to quantify the statistics of the system of response and explore the uncertainty quantification.The computational cost is very expensive.To overcome the difficulty,a low rank approximation is introduced to the solution of the corresponding nonlinear problem and admits a variable-separation form in terms of stochastic basis functions and deterministic basis functions.No it-eration is performed at each enrichment step.These basis functions are model-oriented and involve offline computation.To efficiently identify the stochastic basis functions,we utilize the greedy algorithm to select some optimal sam-ples.Then the modified Chebyshev-Picard iteration method is used to solve the nonlinear system at the selected optimal samples,the solutions of which are used to train the deterministic basis functions.With the deterministic basis functions,we can obtain the corresponding stochastic basis functions by solv-ing linear differential systems.The computation of the stochastic Chebyshev-Picard method decomposes into an offline phase and an online phase.This is very desirable for scientific computation.Several examples are presented to illustrate the efficacy of the proposed method for different nonlinear differential equations.
基金The paper was financially supported by the National Natural Science Foundation of China (No. 19802008)Excellent Doctoral Dissertation Grant of the Ministry of Education of China (No. 199927)
文摘Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
文摘In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show that this method is powerful for this type of equations.
基金Project Supported by the Science Fund of the Chinese Academy of Sciences
文摘In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and the remainders have been estimated.
基金Supported by the Scientific Research Foundation for Advisor Program of Higher Education of Gansu Province(1009-6)Supported by the Scientific Research Foundation for Youth Scholars of Hexi University(qn201015)
文摘The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value methods.In this paper,we propose a new circulant preconditioner to speed up the convergence rate of the GMRES method, which is a convex linear combination of P-circulant and Strang-type circulant preconditioners. Theoretical and practical arguments are given to show that this preconditioner is feasible and effective in some cases.
文摘This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In particular, we employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but bypass the standard back-propagation algorithm for updating the intrinsic weights. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial or boundary conditions and contains no adjustable parameters. The second part involves a feed-forward neural network to be trained to satisfy the differential equation. Numerous works have appeared in recent times regarding the solution of differential equations using ANN, however majority of these employed a single hidden layer perceptron model, incorporating a back-propagation algorithm for weight updation. For the homogeneous case, we assume a solution in exponential form and compute a polynomial approximation using statistical regression. From here we pick the unknown coefficients as the weights from input layer to hidden layer of the associated neural network trial solution. To get the weights from hidden layer to the output layer, we form algebraic equations incorporating the default sign of the differential equations. We then apply the Gaussian Radial Basis function (GRBF) approximation model to achieve our objective. The weights obtained in this manner need not be adjusted. We proceed to develop a Neural Network algorithm using MathCAD software, which enables us to slightly adjust the intrinsic biases. We compare the convergence and the accuracy of our results with analytic solutions, as well as well-known numerical methods and obtain satisfactory results for our example ODE problems.
文摘In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation. This numerical integrator has been tested for desirable qualities like stability, convergence and consistency. The discrete models have been used for a numerical experiment which makes us conclude that the schemes are suitable for the solution of first order ordinary differential equation.
基金This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada(Grant OGPIN-336)and by the"Ministere de l'Education du Quebec"(FCAR Grant-ER-0725)
文摘A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.
文摘In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also several numerical examples are included.
文摘In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.
基金the National Natural Science Foundation of China(19971057) and the Youth Science Foundation of ShanghaiMunicipal Commission
文摘Biforations of an ordinary differential equation with two-point boundary value condition are investigated. Using the singularity theory based on the Liapunov-Schmidt reduction, we have obtained some characterization results.
文摘Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.
文摘By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.