期刊文献+
共找到661篇文章
< 1 2 34 >
每页显示 20 50 100
The Boundary Element Method for Ordinary State-Based Peridynamics
1
作者 Xue Liang Linjuan Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2807-2834,共28页
The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic... The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic finite element method(PD-FEM),and peridynamic boundary element method(PD-BEM),have been proposed.PD-BEM,in particular,outperforms other methods by eliminating spurious boundary softening,efficiently handling infinite problems,and ensuring high computational accuracy.However,the existing PD-BEM is constructed exclusively for bond-based peridynamics(BBPD)with fixed Poisson’s ratio,limiting its applicability to crack propagation problems and scenarios involving infinite or semi-infinite problems.In this paper,we address these limitations by introducing the boundary element method(BEM)for ordinary state-based peridynamics(OSPD-BEM).Additionally,we present a crack propagationmodel embeddedwithin the framework ofOSPD-BEM to simulate crack propagations.To validate the effectiveness of OSPD-BEM,we conduct four numerical examples:deformation under uniaxial loading,crack initiation in a double-notched specimen,wedge-splitting test,and threepoint bending test.The results demonstrate the accuracy and efficiency of OSPD-BEM,highlighting its capability to successfully eliminate spurious boundary softening phenomena under varying Poisson’s ratios.Moreover,OSPDBEMsignificantly reduces computational time and exhibits greater consistencywith experimental results compared to PD-MPM. 展开更多
关键词 ordinary state-based peridynamics boundary element method crack propagation fracture toughness
下载PDF
HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 被引量:4
2
作者 Wang Tongke(王同科) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第2期213-225,共13页
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me... In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective. 展开更多
关键词 SECOND order ordinary differential equation TWO-POINT boundary value problem high accuracy finite volume element method error estimate.
下载PDF
Solution of Laguerre’s Differential Equations via Modified Adomian Decomposition Method
3
作者 Mariam Al-Mazmumy Aishah A. Alsulami 《Journal of Applied Mathematics and Physics》 2023年第1期85-100,共16页
This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an... This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of. 展开更多
关键词 Modification method Singular ordinary Differential Equations Laguerre’s Equation Associated Laguerre’s Equation
下载PDF
On the Application of Adomian Decomposition Method to Special Equations in Physical Sciences
4
作者 Aishah Alsulami Mariam Al-Mazmumy +1 位作者 Huda Bakodah Nawal Alzaid 《American Journal of Computational Mathematics》 2023年第3期387-397,共11页
The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study a... The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study are the singular equations that arise in many physical science applications. Thus, through the application of the ADM, a generalized recursive scheme was successfully derived and further utilized to obtain closed-form solutions for the models under consideration. The method is, indeed, fascinating as respective exact analytical solutions are accurately acquired with only a small number of iterations. 展开更多
关键词 Iterative Scheme Adomian Decomposition method Initial-Value Problems Singular ordinary Differential Equations
下载PDF
A New Kind of Iteration Method for Finding Approximate Periodic Solutions to Ordinary Diferential Equations
5
作者 Wu Dong-xu Wang Cai-ling +1 位作者 Xu Xu Li Yong 《Communications in Mathematical Research》 CSCD 2013年第4期297-304,共8页
In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most inte... In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most interesting features of the proposed methods are its extreme simplicity and concise forms of iteration formula for a wide range of nonlinear problems. 展开更多
关键词 iteration method approximate periodic solution ordinary differentialequation
下载PDF
Numerical Treatment of Initial Value Problems of Nonlinear Ordinary Differential Equations by Duan-Rach-Wazwaz Modified Adomian Decomposition Method 被引量:1
6
作者 Omür Umut Serpil Yasar 《International Journal of Modern Nonlinear Theory and Application》 2019年第1期17-39,共23页
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus... We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist. 展开更多
关键词 Adomian Decomposition method Duan-Rach-Wazwaz Modified Adomian Decomposition method Initial Value Problem Nonlinear ordinary Differential Equation Mathematica Solution 4-th Order Runge Kutta method Pade Approximants
下载PDF
Preserving environmental quality of ecotourism sites through community participation in Purulia District of West Bengal,India
7
作者 Piyall CHATTERJEE Soumyendra Kishore DATTA 《Regional Sustainability》 2024年第3期111-123,共13页
The importance of valuing environmental resources,especially in ecotourism sites,has become increasingly important over the last two decades.Ecotourism is now considered as an important source of livelihood of local s... The importance of valuing environmental resources,especially in ecotourism sites,has become increasingly important over the last two decades.Ecotourism is now considered as an important source of livelihood of local stakeholders in backward regions.Therefore,the preservation of ecotourism sites through community participation seems very important to maintain continued flow of tourists.This study aimed at recognizing the importance of community participation for the preservation of ecotourism sites.For this,this study executed a survey based on non-probability sampling in two ecotourism sites(Garpanchkot and Baranti)covering 100 respondents in Purulia District,West Bengal of India.The central issue of this study was to assess the tendency of community participation for the conservation of ecotourism sites and find the optimum condition for offering participatory labour time.This study showed that the participation of young people is high,and the majority of respondents are aware of the importance in protecting ecotourism sites.Because respondents were too poor to offer money,the contingent valuation method(CVM)was used to elicit their willingness to pay(WTP)participatory labour time for the conservation of ecotourism sites.Respondents’age,income,education level,caste,and their perceived environmental quality had significant relationship with their WTP participatory labour time by applying the ordinary least square(OLS)model.It was found that the mean WTP participatory labour time of each respondent in a month is approximately 3.64 h.The significance of this study is that community participation can improve the sense of belonging,trust,and credibility of ecotourism sites,making them more appreciative of the value and protection of these sites. 展开更多
关键词 Ecotourism site conservation Community participation Local stakeholders Willingness to pay Participatory labour time ordinary least square(OLS)model Contingent valuation method(CVM)
下载PDF
Production of the Reduction Formula of Seventh Order Runge-Kutta Method with Step Size Control of an Ordinary Differential Equation
8
作者 Georgios D. Trikkaliotis Maria Ch. Gousidou-Koutita 《Applied Mathematics》 2022年第4期325-337,共13页
The purpose of the present work is to construct a nonlinear equation system (85 × 53) using Butcher’s Table and then by solving this system to find the values of all set parameters and finally the reduction form... The purpose of the present work is to construct a nonlinear equation system (85 × 53) using Butcher’s Table and then by solving this system to find the values of all set parameters and finally the reduction formula of the Runge-Kutta (7,9) method (7<sup>th</sup> order and 9 stages) for the solution of an Ordinary Differential Equation (ODE). Since the system of high order conditions required to be solved is too complicated, we introduce a subsystem from the original system where all coefficients are found with respect to 9 free parameters. These free parameters, as well as some others in addition, are adjusted in such a way to furnish more efficient R-K methods. We use the MATLAB software to solve several of the created subsystems for the comparison of our results which have been solved analytically. 展开更多
关键词 Initial Value Problem Runge-Kutta methods ordinary Differential Equations
下载PDF
Derivation of the Reduction Formula of Sixth Order and Seven Stages Runge-Kutta Method for the Solution of an Ordinary Differential Equation
9
作者 Georgios D. Trikkaliotis Maria Ch. Gousidou-Koutita 《Applied Mathematics》 2022年第4期338-355,共18页
This paper is describing in detail the way we define the equations which give the formulas in the methods Runge-Kutta 6<sup>th</sup> order 7 stages with the incorporated control step size in the numerical ... This paper is describing in detail the way we define the equations which give the formulas in the methods Runge-Kutta 6<sup>th</sup> order 7 stages with the incorporated control step size in the numerical solution of Ordinary Differential Equations (ODE). The purpose of the present work is to construct a system of nonlinear equations and then by solving this system to find the values of all set parameters and finally the reduction formula of the Runge-Kutta (6,7) method (6<sup>th</sup> order and 7 stages) for the solution of an Ordinary Differential Equation (ODE). Since the system of high order conditions required to be solved is complicated, all coefficients are found with respect to 7 free parameters. These free parameters, as well as some others in addition, are adjusted in such a way to furnish more efficient R-K methods. We use the MATLAB software to solve several of the created subsystems for the comparison of our results which have been solved analytically. Some examples for five different choices of the arbitrary values of the systems are presented in this paper. 展开更多
关键词 Initial Value Problem Runge-Kutta methods ordinary Differential Equations
下载PDF
Existence of Periodic Solutions for Odd Order Ordinary Differential Equations via the Homotopy Method
10
作者 刘停战 于波 《Northeastern Mathematical Journal》 CSCD 2004年第2期135-138,共4页
This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which ... This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary 展开更多
关键词 homotopy method finding periodic solution odd order ordinary differential equations global convergence
下载PDF
ASYMPTOTIC METHOD FOR SINGULAR PERTURBATION PROBLEM OF ORDINARY DIFFERENCE EQUATIONS
11
作者 吴启光 苏煜城 孙志忠 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第3期221-230,共10页
This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly,... This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method. 展开更多
关键词 ASYMPTOTIC method FOR SINGULAR PERTURBATION PROBLEM of ordinary DIFFERENCE EQUATIONS
下载PDF
SECOND-ORDER ACCURATE DIFFERENCE METHOD FOR THE SINGULARLY PERTURBED PROBLEM OF FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS
12
作者 王国英 陈明伦 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第5期463-468,共6页
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
关键词 SECOND-ORDER ACCURATE DIFFERENCE method FOR THE SINGULARLY PERTURBED PROBLEM of FOURTH-ORDER ordinary DIFFERENTIAL EQUATIONS
下载PDF
Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method 被引量:11
13
作者 M.SHEIKHOLESLAMI D.D.GANJI +1 位作者 H.R.ASHORYNEJAD H.B.ROKNI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第1期25-36,共12页
In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes eq... In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different a, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann :number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated. 展开更多
关键词 MAGNETOHYDRODYNAMIC Jeffery-Hamel flow Adomian decomposition method nonlinear ordinary differential equation NANofLUID
下载PDF
A New Flexible Multibody Dynamics Analysis Methodology of Deployable Structures with Scissor-Like Elements 被引量:5
14
作者 Qi’an Peng Sanmin Wang +1 位作者 Changjian Zhi Bo Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第5期107-116,共10页
There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equa... There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equations,a new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements(SLEs)is presented.Firstly,a precise model of a flexible bar of SLE is established by the higher order shear deformable beam element based on the absolute nodal coordinate formulation(ANCF),and the master/slave freedom method is used to obtain the dynamics equations of SLEs without constraint equations.Secondly,according to features of deployable structures,the specification matrix method(SMM)is proposed to eliminate the constraint equations among SLEs in the frame of ANCF.With this method,the inner and the boundary nodal coordinates of element characteristic matrices can be separated simply and efficiently,especially on condition that there are vast nodal coordinates.So the element characteristic matrices can be added end to end circularly.Thus,the dynamic model of deployable structure reduces dimension and can be assembled without any constraint equation.Next,a new iteration procedure for the generalized-a algorithm is presented to solve the ordinary differential equations(ODEs)of deployable structure.Finally,the proposed methodology is used to analyze the flexible multi-body dynamics of a planar linear array deployable structure based on three scissor-like elements.The simulation results show that flexibility has a significant influence on the deployment motion of the deployable structure.The proposed methodology indeed reduce the difficulty of solving and the amount of equations by eliminating redundant degrees of freedom and the constraint equations in scissor-like elements and among scissor-like elements. 展开更多
关键词 Flexible MULTIBODY dynamics Scissor-like elements ABSOLUTE NODAL COORDINATE FORMULATION Specification matrix method ordinary differential EQUATIONS
下载PDF
An Effective Numerical Method for the Solution of a Stochastic Coronavirus(2019-nCovid)Pandemic Model 被引量:3
15
作者 Wasfi Shatanawi Ali Raza +3 位作者 Muhammad Shoaib Arif Kamaledin Abodayeh Muhammad Rafiq Mairaj Bibi 《Computers, Materials & Continua》 SCIE EI 2021年第2期1121-1137,共17页
Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are ... Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are fundamental properties of stochastic modeling.A stochastic coronavirus model is studied with techniques of transition probabilities and parametric perturbation.Well-known explicit methods such as Euler Maruyama,stochastic Euler,and stochastic Runge–Kutta are investigated for the stochastic model.Regrettably,the above essential properties are not restored by existing methods.Hence,there is a need to construct essential properties preserving the computational method.The non-standard approach of finite difference is examined to maintain the above basic features of the stochastic model.The comparison of the results of deterministic and stochastic models is also presented.Our proposed efficient computational method well preserves the essential properties of the model.Comparison and convergence analyses of the method are presented. 展开更多
关键词 Coronavirus pandemic model stochastic ordinary differential equations numerical methods convergence analysis
下载PDF
A New Circulant Preconditioned GMRES Method for Solving Ordinary Differential Equation 被引量:1
16
作者 朱睦正 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第4期535-544,共10页
The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value... The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value methods.In this paper,we propose a new circulant preconditioner to speed up the convergence rate of the GMRES method, which is a convex linear combination of P-circulant and Strang-type circulant preconditioners. Theoretical and practical arguments are given to show that this preconditioner is feasible and effective in some cases. 展开更多
关键词 circulant preconditioner boundary value method ordinary differential equation(ODE) GMRES
下载PDF
A Comparative Study of Adomain Decompostion Method and He-Laplace Method 被引量:1
17
作者 Badradeen A. A. Adam 《Applied Mathematics》 2014年第21期3353-3364,共12页
In this paper, we present a comparative study between the He-Laplace and Adomain decomposition method. The study outlines the significant features of two methods. We use the two methods to solve the nonlinear Ordinary... In this paper, we present a comparative study between the He-Laplace and Adomain decomposition method. The study outlines the significant features of two methods. We use the two methods to solve the nonlinear Ordinary and Partial differential equations. Laplace transformation with the homotopy method is called He-Laplace method. A comparison is made among Adomain decomposition method and He-Laplace. It is shown that, in He-Laplace method, the nonlinear terms of differential equation can be easy handled by the use He’s polynomials and provides better results. 展开更多
关键词 Adomain Decomposition method He-Laplace Transform method HOMOTOPY Perturbation method ordinary DIFFERENTIAL Equation Partial DIFFERENTIAL Equations He’s POLYNOMIALS
下载PDF
Numerical Simulation of Coupled Nonlinear Schrodinger Equations Using the Generalized Differential Quadrature Method 被引量:1
18
作者 R.Mokhtari A.Samadi Toodar N.G.Chegini 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第2期5-8,共4页
We the extend application of the generalized differential quadrature method(GDQM)to solve some coupled nonlinear Schr(o)dinger equations.The cosine-based GDQM is employed and the obtained system of ordinary differenti... We the extend application of the generalized differential quadrature method(GDQM)to solve some coupled nonlinear Schr(o)dinger equations.The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge-Kutta method.The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly.Some comparisons with the methods applied in the literature are carried out. 展开更多
关键词 method INVARIANT ordinary
下载PDF
PROJECTION METHODS AND APPROXIMATIONS FOR ORDINARY DIFFERENTIAL EQUATIONS 被引量:1
19
作者 A. Bensebah F. Dubeau J. Gelinas 《Analysis in Theory and Applications》 1997年第3期78-90,共13页
A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th... A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given. 展开更多
关键词 PROJECTION methodS AND APPROXIMATIONS FOR ordinary DIFFERENTIAL EQUATIONS ODE
下载PDF
DIFFERENTIATOR SERIES SOLUTION OF LINEAR DIFFERENTIAL ORDINARY EQUATION
20
作者 柯红路 谢和熙 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第8期59-66,共8页
In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential d... In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge. 展开更多
关键词 linear ordinary differential equation differentiator series method special solution general solution
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部