As a new type of ironmaking raw materials,carbon composite iron ore hot briquette(CCB) is the product of fine iron ore and fine coal by hot briquetting process.On basis of experimental research on the manufacturing an...As a new type of ironmaking raw materials,carbon composite iron ore hot briquette(CCB) is the product of fine iron ore and fine coal by hot briquetting process.On basis of experimental research on the manufacturing and metallurgical properties of CCB,this study focused on the application of CCB to blast furnace ironmaking and newly-developed shaft furnace smelting reduction processes.Firstly,the metallurgical properties of CCB are experimentally tested and compared with the common iron-bearing burdens.Then,the effects of charging CCB on blast furnace operation are numerically analyzed by means of multi-fluid blast furnace model,and the flowchart and pilot test of CCB-Shaft furnace smelting reduction process are briefly introduced.展开更多
Mass loss and direct reduction characteristics of iron ore-coal composite pellets under different technological parameters were investigated. Meanwhile, changes of iron phase at different temperatures were analyzed by...Mass loss and direct reduction characteristics of iron ore-coal composite pellets under different technological parameters were investigated. Meanwhile, changes of iron phase at different temperatures were analyzed by using X-ray diffraction (XRD), and characteristics of crushed products were studied by using a scanning electron microscope (SEM). The results showed that heating rate had little influence on the reduction, but the temperature played an important role in the reduction process. The mass loss rate increased rapidly from 800 to 1 100 ℃. The reduction process can be divided into three steps which correspond to different temperature ranges. Fe2 03 began to transform into Fe304 below 500 ℃, and FeO was reduced into Fe from 900 ℃. At 900 ℃, the reduction product showed a clear porous structure, which promoted the reduction progress. At 1000 ℃, the metallic Fe dominated the sample, and the reduction reached a very high degree.展开更多
文摘As a new type of ironmaking raw materials,carbon composite iron ore hot briquette(CCB) is the product of fine iron ore and fine coal by hot briquetting process.On basis of experimental research on the manufacturing and metallurgical properties of CCB,this study focused on the application of CCB to blast furnace ironmaking and newly-developed shaft furnace smelting reduction processes.Firstly,the metallurgical properties of CCB are experimentally tested and compared with the common iron-bearing burdens.Then,the effects of charging CCB on blast furnace operation are numerically analyzed by means of multi-fluid blast furnace model,and the flowchart and pilot test of CCB-Shaft furnace smelting reduction process are briefly introduced.
基金Sponsored by Fundamental Research Funds for the Central Universities of China(FRF-SD-12-007B)National Science and Technology Support Plan in the 12th Five-year of China(2011BAE13B09)
文摘Mass loss and direct reduction characteristics of iron ore-coal composite pellets under different technological parameters were investigated. Meanwhile, changes of iron phase at different temperatures were analyzed by using X-ray diffraction (XRD), and characteristics of crushed products were studied by using a scanning electron microscope (SEM). The results showed that heating rate had little influence on the reduction, but the temperature played an important role in the reduction process. The mass loss rate increased rapidly from 800 to 1 100 ℃. The reduction process can be divided into three steps which correspond to different temperature ranges. Fe2 03 began to transform into Fe304 below 500 ℃, and FeO was reduced into Fe from 900 ℃. At 900 ℃, the reduction product showed a clear porous structure, which promoted the reduction progress. At 1000 ℃, the metallic Fe dominated the sample, and the reduction reached a very high degree.