Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leachin...Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and...Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and sluggish kinetics of polysulfide in lithium-sulfur(Li-S)batteries.However,a single strategy can only take limited effect.Modulating catalytic hosts with synergistic effects are urgently desired.Herein,Mn_(3)O_(4)-MnS heterogeneous multi-shelled hollow spheres are meticulously designed by controlled sulfuration of Mn2O3 hollow spheres,and then applied as advanced encapsulation hosts for Li-S batteries.Benefiting from the separated spatial confinement by hollow multi-shelled structure,ample exposed active sites and built-in electric field by heterogeneous interface,and synergistic effects between Mn_(3)O_(4)(strong adsorption)and MnS(fast conversion)components,the assembled battery achieves prominent rate capability and decent cyclability(0.016%decay per cycle at 2 C,1000 cycles).More crucially,satisfactory areal capacity reaches up to 7.1 mAh cm^(-2)even with high sulfur loading(8.0 mg cm^(-2))and lean electrolyte(E/S=4.0 pL mg^(-1))conditions.This work will provide inspiration for the rational design of hollow multi-shelled heterostructure for various electrocatalysis applications.展开更多
In order to study the sintering characteristics of Ca-rich iron ore,chemical analysis,laser diffraction,scanning electron microscopy,XRD-Rietveld method,and micro-sintering were used to analyze the mineralogical prope...In order to study the sintering characteristics of Ca-rich iron ore,chemical analysis,laser diffraction,scanning electron microscopy,XRD-Rietveld method,and micro-sintering were used to analyze the mineralogical properties and sintering pot tests were used to study the sintering behavior.In addition,a grey correlation mathematical model was used to calculate and compare the comprehensive sintering performance under different calcium-rich iron ore contents.The results demonstrate that the Ca-rich iron ore has coarse grain size and strong self-fusing characteristics with Ca element in the form of calcite(CaCO_(3)) and the liquid phase produced by the self-fusing of the calcium-rich iron ore is well crystallized.Its application with a 20wt%content in sintering improves sinter productivity,reduces fuel consumption,enhances reduction index,and improves gas permeability in blast furnace by 0.45 t/(m^(2)·h),6.11 kg/t,6.17%,and 65.39 kPa·℃,respectively.The Ca-rich iron ore sintering can improve the calorific value of sintering flue gas compared with magnetite sintering,which is conducive to recovering heat for secondary use.As the content of the Ca-rich iron ore increases,sinter agglomeration shifts from localized liquid-phase bonding to a combination of localized liquid-phase bonding and iron oxide crystal connection.Based on an examination of the greater weight value of productivity with grey correlation analysis,the Ca-rich iron ore is beneficial for the comprehensive index of sintering in the range of 0-20wt%content.Therefore,it may be used in sintering with magnetite concentrates as the major ore species.展开更多
The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the ...The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top, middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column. The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.展开更多
The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beisha...The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt. The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and control the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Compresso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R'-type and T-type ones. (5) Dynamic differen- tiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming materials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a negative correlation between the gold abundance and susceptibility anlsotropy (P) of the altered mylonlte samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.展开更多
Introduction of cover crops may improve the diversity of arbuscular mycorrhizal fungi (AMF) in roots and soil under crop rotational systems;therefore, it is necessary to determine the potential for AMF communities to ...Introduction of cover crops may improve the diversity of arbuscular mycorrhizal fungi (AMF) in roots and soil under crop rotational systems;therefore, it is necessary to determine the potential for AMF communities to improve sustainable food production. We investigated the impact of cover crops, including wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), pea (Pisum sativum L.), and hairy vetch (Vicia villosa Roth.), on the AMF communities in their roots in autumn and spring sowing seasons with PCR-DGGE analysis. Although all four cover crops impacted the AMF community structure in roots, the diversity of AMF communities was unchanged among crop type or sowing season. Redundancy analysis (RDA) demonstrated that AMF communities within crop type were significantly different. However, the AMF community structures were not influenced by growing season, suggesting that growth stage in crops may be more responsive to shaping AMF community structure in crop roots than host crop identity.展开更多
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c...Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.展开更多
A set of potential parameters for modeling zircon was obtained by atomistic simulation techniques and a reasonable structural model of zircon was established by fitting some important properties of zircon.Based on the...A set of potential parameters for modeling zircon was obtained by atomistic simulation techniques and a reasonable structural model of zircon was established by fitting some important properties of zircon.Based on the equilibrium configuration of zircon, authors calculated the formation energies of basic point defects and intrinsic disorders. The heats of solution of substituting Pu for Zr showed that there was an immiscible gap at the composition of (Pu75%-Zr25%, in mole fraction), which suggests that the amount of Pu substituting for Zr in zircon be≤50%.展开更多
Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So fa...Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So far, most mining and mineral beneficiation plants export raw materials only subjected to beneficiation process. Out of more than 200 deposits in Mongolia, 91 deposits had been explored with different methods and stages, and estimated the resource of 33 reserves. Without processing the iron ore, it is impossible to use it for steelmaking due to its high sulfur and phosphorus impurities. Therefore, to study the processing of iron ore deposits in Mongolia, we did a preliminary investigation of iron ore deposits and took samples from the Tamir Gol deposit with high silica and phosphorus content that is difficult to process. Then, conducted mineral analysis and determined the grain structure and beneficiation characteristics of Tamir Gol iron deposit. .展开更多
CRUSTOBODY STRUCTURE OFCHINA AND DISTRIBUTION OFROCK GOLD ORE DEPOSITSHuang Ruihua(Changsha Institute of Geotectonics, Academia Sinica, 410013, Hunan, China)rock gold ore deposit, crustobody structure, China.China con...CRUSTOBODY STRUCTURE OFCHINA AND DISTRIBUTION OFROCK GOLD ORE DEPOSITSHuang Ruihua(Changsha Institute of Geotectonics, Academia Sinica, 410013, Hunan, China)rock gold ore deposit, crustobody structure, China.China continent is divided into four crustobodies from east to west. There is well-known Jinguashi rock gold deposit in East Asia continental margin crustobody. Gold met-allization is very well developed in East Asia crustobody. There are mainly rock gold ore de-posits related to Archean greenstone formation and Mesozoic-Cenozoic rock gold ore deposits in it. There are mainly Palaeozoic rock gold ore deposits of geosynclinal type and Cenozoic rock gold ore deposits of diwa (depression) type in Central Asia crustobody. South Asia crustobody possesses great potential in rock gold metallization. As a whole, prospecting exploration and exploitation of rock gold are very well of future in China.展开更多
In recent2 0 years,because of the finding ofmany large- superlargegold deposits,we re- new the theories for prospecting and gain many things and conceptions.The current geo- chemical and gold- forming theories underli...In recent2 0 years,because of the finding ofmany large- superlargegold deposits,we re- new the theories for prospecting and gain many things and conceptions.The current geo- chemical and gold- forming theories underline the importance of the early submarine volcano- sedimentation,metamorphic differention,sedimentation of terrigenous clastics,thermal spring and it’s sedimentation,syngenesis process and other hypergene supplying the source for metallogenic materials.According to the study for source bed(rock) and depsitional for- mation of gold,we find that gold will be gradually enriched and mineralized in source bed (rock) ,because of variousgeologicprocesses,such as regional metamorphism ormigmatiza- tion,geothermal bittern,volcanism. The ore- control of deep and giant fault and ductile shear beltand tectono- flash space is emphasized,especially,we should notice the long- term, succession and multistage of the展开更多
Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges in...Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges include lithium dendrite growth in the anode side,volume change of the active material,poor electrical conductivity,dissolution and migration of poly sulfides,and slow rate of solid-state reactions in the cathode side.Since the electrochemical performance of lithium-sulfur batteries is greatly affected by the design of the cathode host material,it has also been widely discussed in addressing the abovementioned issues.In this paper,three design ideas of cathode host materials in terms of microstructure,crystal structure and electronic structure are introduced and summarized.Crucially,the current progress of these three structural design strategies and their effects on the electrochemical performance of lithium-sulfur batteries are discussed in detail.Finally,future directions in the structural design of cathode materials for lithium-sulfur batteries are discussed and further perspectives are provided.展开更多
Three-dimensional (3D) host materials for lithium metal anodes (LMAs) have gained attention because they can mitigate volume expansion and local current density through their large surface area and suppress the dendri...Three-dimensional (3D) host materials for lithium metal anodes (LMAs) have gained attention because they can mitigate volume expansion and local current density through their large surface area and suppress the dendritic growth of lithium. Recent research on 3D host materials has focused on conductive materials;however, the benefits of 3D host materials cannot be fully utilized because lithium deposition begins at the top of the structure. Herein, we fabricate SiO_(2)-TiO_(2) composite microspheres with bimodal pore structures (bi-SiTiO) by simple spray pyrolysis. These microspheres effectively store lithium within the structure from the bottom of the electrode while preventing lithium dendrite formation. Focused ion beam-scanning transmission electron microscopy (FIB-STEM) analysis reveals that the lithiophilic properties of composite microspheres enhanced their effectiveness in storing lithium, with small pores acting as “lithium-ion sieves” for a uniform lithium-ion flux and large pores that provide sufficient volume for lithium deposition. The bi-SiTiO composite microspheres exhibit a high Coulombic efficiency of 98.5% over 200 cycles at 2.0 mA·cm^(−2) when operated in a lithium half-cell. With a high lithium loading of 5.0 mAh·cm^(−2), the symmetrical cell of the bi-SiTiO electrode sustains more than 900 h. A full cell coupled with an LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) (NCM811) cathode also exhibits enhanced electrochemical properties in terms of cycling stability and rate capability.展开更多
The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural...The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center.展开更多
Background Dairy cows’lactation performance is the outcome of the crosstalk between ruminal microbial metabo-lism and host metabolism.However,it is still unclear to what extent the rumen microbiome and its metabolite...Background Dairy cows’lactation performance is the outcome of the crosstalk between ruminal microbial metabo-lism and host metabolism.However,it is still unclear to what extent the rumen microbiome and its metabolites,as well as the host metabolism,contribute to regulating the milk protein yield(MPY).Methods The rumen fluid,serum and milk of 12 Holstein cows with the same diet(45%coarseness ratio),parity(2–3 fetuses)and lactation days(120–150 d)were used for the microbiome and metabolome analysis.Rumen metabolism(rumen metabolome)and host metabolism(blood and milk metabolome)were connected using a weighted gene co-expression network(WGCNA)and the structural equation model(SEM)analyses.Results Two different ruminal enterotypes,with abundant Prevotella and Ruminococcus,were identified as type1 and type2.Of these,a higher MPY was found in cows with ruminal type2.Interestingly,[Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae(the differential bacteria)were the hub genera of the network.In addition,differential ruminal,serum and milk metabolome between enterotypes were identified,where the cows with type2 had higher L-tyrosine of rumen,ornithine and L-tryptophan of serum,and tetrahydroneopterin,palmitoyl-L-carnitine,S-lactoylglutathione of milk,which could provide more energy and substrate for MPY.Further,based on the identi-fied modules of ruminal microbiome,as well as ruminal serum and milk metabolome using WGCNA,the SEM analysis indicated that the key ruminal microbial module1,which contains the hub genera of the network([Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae)and high abundance of bacteria(Prevotella and Ruminococcus),could regulate the MPY by module7 of rumen,module2 of blood,and module7 of milk,which contained L-tyrosine and L-tryptophan.Therefore,in order to more clearly reveal the process of rumen bacterial regulation of MPY,we established the path of SEM based on the L-tyrosine,L-tryptophan and related components.The SEM based on the metabolites suggested that[Ruminococcus]gauvreauii group could inhibit the energy supply of serum tryptophan to MPY by milk S-lactoylglutathione,which could enhance pyruvate metabolism.Norank_f_Ruminococcaceae could increase the ruminal L-tyrosine,which could provide the substrate for MPY.Conclusion Our results indicated that the represented enterotype genera of Prevotella and Ruminococcus,and the hub genera of[Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae could regulate milk protein synthesis by affecting the ruminal L-tyrosine and L-tryptophan.Moreover,the combined analysis of enterotype,WGCNA and SEM could be used to connect rumen microbial metabolism with host metabolism,which provides a fundamental understanding of the crosstalk between host and microorganisms in regulating the synthesis of milk composition.展开更多
The analytical structure of a typical fuzzy on - off controller that employs three or more triangular Input fuzzy sets, Zadeh fuzzy logic AND operator, fuzzy rules with singleton output fuzzy sets, and the centriod de...The analytical structure of a typical fuzzy on - off controller that employs three or more triangular Input fuzzy sets, Zadeh fuzzy logic AND operator, fuzzy rules with singleton output fuzzy sets, and the centriod defuzzifier is Investigated in this paper. The analytical expressions of the variable gains of the fuzzy controller are derived. The resulting explicit structure shows that the fuzzy controller is accurately a nonlinear PD - like controller with gains continuously changing with system output in different regions of input space.展开更多
The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- c...The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011).展开更多
A new o-phthalato-bridged oxamide copper(Ⅱ) complex 1, {[Cu2(oxap)](pht). 4H2O}n (oxap=N, N'-bis(2-aminopropyl)oxamide, pht= phthalate dianion), has been prepared and structurally characterized. It crystal...A new o-phthalato-bridged oxamide copper(Ⅱ) complex 1, {[Cu2(oxap)](pht). 4H2O}n (oxap=N, N'-bis(2-aminopropyl)oxamide, pht= phthalate dianion), has been prepared and structurally characterized. It crystallizes in monoclinic, space group C2/c with a=23.424(4), h=7.9696(14), c=15.727(3)A°,β=129.617(2)°, C16H28Cu2N4O10, Mr=563.50, V=2261.6(7) A°, Z=4, Dc=1.655 g/cm^3, μ(MoKα)=1.939 mm^-1, F(000) = 1160, the final R=0.0393 and wR=0.0928 for 1707 observed reflections with I〉2σ(1). Single-crystal X-ray analysis reveals that 1 displays a one-dimensional zigzag chain structure, in which each Cu(oxap) moiety adopting trans-conformation is connected by ,μ1,6-phthalate anion bridges, and these zigzag chains are further linked by another ,μ1,6-phthalate anion bridge to form a 2D sheet structure. The polar guest water molecules reside in the inter-and intrasheets to stabilize the whole crystal structure.展开更多
Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This...Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.展开更多
基金the National Natural Science Foundation of China(Nos.52174258,92162109,52222405 and 52004184).
文摘Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.
基金The support from the National Natural Science Foundation of China(No.51971083)the Natural Science Foundation of Heilongjiang Province,China(YQ 2020E007)is gratefully acknowledgedfinancially sponsored by Heilongjiang Touyan Team Program.
文摘Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and sluggish kinetics of polysulfide in lithium-sulfur(Li-S)batteries.However,a single strategy can only take limited effect.Modulating catalytic hosts with synergistic effects are urgently desired.Herein,Mn_(3)O_(4)-MnS heterogeneous multi-shelled hollow spheres are meticulously designed by controlled sulfuration of Mn2O3 hollow spheres,and then applied as advanced encapsulation hosts for Li-S batteries.Benefiting from the separated spatial confinement by hollow multi-shelled structure,ample exposed active sites and built-in electric field by heterogeneous interface,and synergistic effects between Mn_(3)O_(4)(strong adsorption)and MnS(fast conversion)components,the assembled battery achieves prominent rate capability and decent cyclability(0.016%decay per cycle at 2 C,1000 cycles).More crucially,satisfactory areal capacity reaches up to 7.1 mAh cm^(-2)even with high sulfur loading(8.0 mg cm^(-2))and lean electrolyte(E/S=4.0 pL mg^(-1))conditions.This work will provide inspiration for the rational design of hollow multi-shelled heterostructure for various electrocatalysis applications.
基金financially supported by the National Natural Science Foundation of China(No.52174291)。
文摘In order to study the sintering characteristics of Ca-rich iron ore,chemical analysis,laser diffraction,scanning electron microscopy,XRD-Rietveld method,and micro-sintering were used to analyze the mineralogical properties and sintering pot tests were used to study the sintering behavior.In addition,a grey correlation mathematical model was used to calculate and compare the comprehensive sintering performance under different calcium-rich iron ore contents.The results demonstrate that the Ca-rich iron ore has coarse grain size and strong self-fusing characteristics with Ca element in the form of calcite(CaCO_(3)) and the liquid phase produced by the self-fusing of the calcium-rich iron ore is well crystallized.Its application with a 20wt%content in sintering improves sinter productivity,reduces fuel consumption,enhances reduction index,and improves gas permeability in blast furnace by 0.45 t/(m^(2)·h),6.11 kg/t,6.17%,and 65.39 kPa·℃,respectively.The Ca-rich iron ore sintering can improve the calorific value of sintering flue gas compared with magnetite sintering,which is conducive to recovering heat for secondary use.As the content of the Ca-rich iron ore increases,sinter agglomeration shifts from localized liquid-phase bonding to a combination of localized liquid-phase bonding and iron oxide crystal connection.Based on an examination of the greater weight value of productivity with grey correlation analysis,the Ca-rich iron ore is beneficial for the comprehensive index of sintering in the range of 0-20wt%content.Therefore,it may be used in sintering with magnetite concentrates as the major ore species.
基金Project(2004CB619205) supported by the National Key Fundamental Research and Development Program of ChinaProject(50325415) supported by the National Science Fund for Distinguished Young ScholarsProject(50574099) supported by the National Natural Science Foundation of China
文摘The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top, middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column. The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.
基金This paper is supported by the National 305 Program (Nos. 2001BA609A-07-02, 2006BAB07B02-04)Research Foundation of former Ministry of Geology and Mineral Re-sources of China (No.96-21)
文摘The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt. The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and control the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Compresso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R'-type and T-type ones. (5) Dynamic differen- tiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming materials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a negative correlation between the gold abundance and susceptibility anlsotropy (P) of the altered mylonlte samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.
文摘Introduction of cover crops may improve the diversity of arbuscular mycorrhizal fungi (AMF) in roots and soil under crop rotational systems;therefore, it is necessary to determine the potential for AMF communities to improve sustainable food production. We investigated the impact of cover crops, including wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), pea (Pisum sativum L.), and hairy vetch (Vicia villosa Roth.), on the AMF communities in their roots in autumn and spring sowing seasons with PCR-DGGE analysis. Although all four cover crops impacted the AMF community structure in roots, the diversity of AMF communities was unchanged among crop type or sowing season. Redundancy analysis (RDA) demonstrated that AMF communities within crop type were significantly different. However, the AMF community structures were not influenced by growing season, suggesting that growth stage in crops may be more responsive to shaping AMF community structure in crop roots than host crop identity.
基金Ministry of Trade,Industry and Energy,Grant/Award Number:20010095Korea Evaluation Institute of Industrial Technology,Grant/Award Number:20012341。
文摘Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.
文摘A set of potential parameters for modeling zircon was obtained by atomistic simulation techniques and a reasonable structural model of zircon was established by fitting some important properties of zircon.Based on the equilibrium configuration of zircon, authors calculated the formation energies of basic point defects and intrinsic disorders. The heats of solution of substituting Pu for Zr showed that there was an immiscible gap at the composition of (Pu75%-Zr25%, in mole fraction), which suggests that the amount of Pu substituting for Zr in zircon be≤50%.
文摘Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So far, most mining and mineral beneficiation plants export raw materials only subjected to beneficiation process. Out of more than 200 deposits in Mongolia, 91 deposits had been explored with different methods and stages, and estimated the resource of 33 reserves. Without processing the iron ore, it is impossible to use it for steelmaking due to its high sulfur and phosphorus impurities. Therefore, to study the processing of iron ore deposits in Mongolia, we did a preliminary investigation of iron ore deposits and took samples from the Tamir Gol deposit with high silica and phosphorus content that is difficult to process. Then, conducted mineral analysis and determined the grain structure and beneficiation characteristics of Tamir Gol iron deposit. .
文摘CRUSTOBODY STRUCTURE OFCHINA AND DISTRIBUTION OFROCK GOLD ORE DEPOSITSHuang Ruihua(Changsha Institute of Geotectonics, Academia Sinica, 410013, Hunan, China)rock gold ore deposit, crustobody structure, China.China continent is divided into four crustobodies from east to west. There is well-known Jinguashi rock gold deposit in East Asia continental margin crustobody. Gold met-allization is very well developed in East Asia crustobody. There are mainly rock gold ore de-posits related to Archean greenstone formation and Mesozoic-Cenozoic rock gold ore deposits in it. There are mainly Palaeozoic rock gold ore deposits of geosynclinal type and Cenozoic rock gold ore deposits of diwa (depression) type in Central Asia crustobody. South Asia crustobody possesses great potential in rock gold metallization. As a whole, prospecting exploration and exploitation of rock gold are very well of future in China.
文摘In recent2 0 years,because of the finding ofmany large- superlargegold deposits,we re- new the theories for prospecting and gain many things and conceptions.The current geo- chemical and gold- forming theories underline the importance of the early submarine volcano- sedimentation,metamorphic differention,sedimentation of terrigenous clastics,thermal spring and it’s sedimentation,syngenesis process and other hypergene supplying the source for metallogenic materials.According to the study for source bed(rock) and depsitional for- mation of gold,we find that gold will be gradually enriched and mineralized in source bed (rock) ,because of variousgeologicprocesses,such as regional metamorphism ormigmatiza- tion,geothermal bittern,volcanism. The ore- control of deep and giant fault and ductile shear beltand tectono- flash space is emphasized,especially,we should notice the long- term, succession and multistage of the
基金financially supported by the National Natural Science Foundation of China(Nos.52075351 and 51604177)the National Key Research and Development Program of China(No.2019YFA0705701)+4 种基金the Major S&T Infrastructure Construction Project of Sichuan Province(No.2020-510000-73-01-441847)the International S&T Innovation Cooperation Program of Sichuan Province(No.2020YFH0039)Chengdu International S&T Cooperation Funded Project(Nos.2020-GH02-00006-HZ and 2022-GH02-00027-HZ)the"1000 Talents Plan"of Sichuan Provincethe Talent Introduction Program of Sichuan University(No.YJ201410)。
文摘Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges include lithium dendrite growth in the anode side,volume change of the active material,poor electrical conductivity,dissolution and migration of poly sulfides,and slow rate of solid-state reactions in the cathode side.Since the electrochemical performance of lithium-sulfur batteries is greatly affected by the design of the cathode host material,it has also been widely discussed in addressing the abovementioned issues.In this paper,three design ideas of cathode host materials in terms of microstructure,crystal structure and electronic structure are introduced and summarized.Crucially,the current progress of these three structural design strategies and their effects on the electrochemical performance of lithium-sulfur batteries are discussed in detail.Finally,future directions in the structural design of cathode materials for lithium-sulfur batteries are discussed and further perspectives are provided.
基金supported by the Bio and Medical Technology Development Program of the National Research Foundation(NRF)funded by the Korean government(No.NRF-2022M3A9I3082366)+1 种基金supported by the Technology Innovation Program(No.20026752)funded by the Ministry of Trade,Industry and Energy(MOTIE,Korea).
文摘Three-dimensional (3D) host materials for lithium metal anodes (LMAs) have gained attention because they can mitigate volume expansion and local current density through their large surface area and suppress the dendritic growth of lithium. Recent research on 3D host materials has focused on conductive materials;however, the benefits of 3D host materials cannot be fully utilized because lithium deposition begins at the top of the structure. Herein, we fabricate SiO_(2)-TiO_(2) composite microspheres with bimodal pore structures (bi-SiTiO) by simple spray pyrolysis. These microspheres effectively store lithium within the structure from the bottom of the electrode while preventing lithium dendrite formation. Focused ion beam-scanning transmission electron microscopy (FIB-STEM) analysis reveals that the lithiophilic properties of composite microspheres enhanced their effectiveness in storing lithium, with small pores acting as “lithium-ion sieves” for a uniform lithium-ion flux and large pores that provide sufficient volume for lithium deposition. The bi-SiTiO composite microspheres exhibit a high Coulombic efficiency of 98.5% over 200 cycles at 2.0 mA·cm^(−2) when operated in a lithium half-cell. With a high lithium loading of 5.0 mAh·cm^(−2), the symmetrical cell of the bi-SiTiO electrode sustains more than 900 h. A full cell coupled with an LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) (NCM811) cathode also exhibits enhanced electrochemical properties in terms of cycling stability and rate capability.
文摘The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center.
基金the National Natural Science Foundation of China(32272829,32072761,31902184)Shaanxi Provincial Science and Technology Association Young Talents Lifting Program Project(20220203).
文摘Background Dairy cows’lactation performance is the outcome of the crosstalk between ruminal microbial metabo-lism and host metabolism.However,it is still unclear to what extent the rumen microbiome and its metabolites,as well as the host metabolism,contribute to regulating the milk protein yield(MPY).Methods The rumen fluid,serum and milk of 12 Holstein cows with the same diet(45%coarseness ratio),parity(2–3 fetuses)and lactation days(120–150 d)were used for the microbiome and metabolome analysis.Rumen metabolism(rumen metabolome)and host metabolism(blood and milk metabolome)were connected using a weighted gene co-expression network(WGCNA)and the structural equation model(SEM)analyses.Results Two different ruminal enterotypes,with abundant Prevotella and Ruminococcus,were identified as type1 and type2.Of these,a higher MPY was found in cows with ruminal type2.Interestingly,[Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae(the differential bacteria)were the hub genera of the network.In addition,differential ruminal,serum and milk metabolome between enterotypes were identified,where the cows with type2 had higher L-tyrosine of rumen,ornithine and L-tryptophan of serum,and tetrahydroneopterin,palmitoyl-L-carnitine,S-lactoylglutathione of milk,which could provide more energy and substrate for MPY.Further,based on the identi-fied modules of ruminal microbiome,as well as ruminal serum and milk metabolome using WGCNA,the SEM analysis indicated that the key ruminal microbial module1,which contains the hub genera of the network([Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae)and high abundance of bacteria(Prevotella and Ruminococcus),could regulate the MPY by module7 of rumen,module2 of blood,and module7 of milk,which contained L-tyrosine and L-tryptophan.Therefore,in order to more clearly reveal the process of rumen bacterial regulation of MPY,we established the path of SEM based on the L-tyrosine,L-tryptophan and related components.The SEM based on the metabolites suggested that[Ruminococcus]gauvreauii group could inhibit the energy supply of serum tryptophan to MPY by milk S-lactoylglutathione,which could enhance pyruvate metabolism.Norank_f_Ruminococcaceae could increase the ruminal L-tyrosine,which could provide the substrate for MPY.Conclusion Our results indicated that the represented enterotype genera of Prevotella and Ruminococcus,and the hub genera of[Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae could regulate milk protein synthesis by affecting the ruminal L-tyrosine and L-tryptophan.Moreover,the combined analysis of enterotype,WGCNA and SEM could be used to connect rumen microbial metabolism with host metabolism,which provides a fundamental understanding of the crosstalk between host and microorganisms in regulating the synthesis of milk composition.
文摘The analytical structure of a typical fuzzy on - off controller that employs three or more triangular Input fuzzy sets, Zadeh fuzzy logic AND operator, fuzzy rules with singleton output fuzzy sets, and the centriod defuzzifier is Investigated in this paper. The analytical expressions of the variable gains of the fuzzy controller are derived. The resulting explicit structure shows that the fuzzy controller is accurately a nonlinear PD - like controller with gains continuously changing with system output in different regions of input space.
基金the China State Mineral Resources Investigation Program (Grant No.1212011220936)National Science Foundation of China (Grant No.U1403292 41472196)
文摘The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011).
基金This project was supported by the National Natural Science Foundation of China (No 20331010) and Natural Science Foundation of Tianjing (No. 033602011)
文摘A new o-phthalato-bridged oxamide copper(Ⅱ) complex 1, {[Cu2(oxap)](pht). 4H2O}n (oxap=N, N'-bis(2-aminopropyl)oxamide, pht= phthalate dianion), has been prepared and structurally characterized. It crystallizes in monoclinic, space group C2/c with a=23.424(4), h=7.9696(14), c=15.727(3)A°,β=129.617(2)°, C16H28Cu2N4O10, Mr=563.50, V=2261.6(7) A°, Z=4, Dc=1.655 g/cm^3, μ(MoKα)=1.939 mm^-1, F(000) = 1160, the final R=0.0393 and wR=0.0928 for 1707 observed reflections with I〉2σ(1). Single-crystal X-ray analysis reveals that 1 displays a one-dimensional zigzag chain structure, in which each Cu(oxap) moiety adopting trans-conformation is connected by ,μ1,6-phthalate anion bridges, and these zigzag chains are further linked by another ,μ1,6-phthalate anion bridge to form a 2D sheet structure. The polar guest water molecules reside in the inter-and intrasheets to stabilize the whole crystal structure.
基金financially supported by the National Natural Science Foundation of China(Nos.52174217 and 52304354)the China Postdoctoral Science Foundation(No.2020M682495)。
文摘Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.