Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
A control strategy for structures subjected to earthquake actions is investigated. The strategy is inspired from the human beings reaction when they are attack by earthquake excitation. Humans realize the earthquake e...A control strategy for structures subjected to earthquake actions is investigated. The strategy is inspired from the human beings reaction when they are attack by earthquake excitation. Humans realize the earthquake excitation by the neurons, sent this information to the brain, a decision is taken there and by neuron system the decision is sent it back to the muscles for suitable action. In similar way the control strategy consists of monitoring the incoming signal, analyzing it and recognizing its dynamic characteristics, applying the control algorithm for the calculation of the required action, and, finally, applying this action. Thus, the way in which the structure is controlled, and the algorithm that is used, are based on the dynamic characteristics and the frequency content of the applied earthquake signal. The algorithm transforms the earthquake signal and structure into a complex plane and, depending on their relative positions, the equivalent forces that should be applied to the structure by the control devices, which are installed on the building, are calculated. From the numerical results it is shown that the above control procedure is efficient in reducing the response of building structures subjected to earthquake loading, with small amount of required control forces. The influence of time delay and saturation capacity is taken into account. Characteristic buildings controlled by pole placement algorithm and subjected to earthquake excitation are analyzed for a range of levels of time delay and saturation capacity of the control devices. The response reduction surfaces for the combined influence of time delay and force saturation of the controlled buildings are obtained. Conclusions regarding the choice of the control system and the desired properties of the control devices are drawn.展开更多
The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beisha...The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt. The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and control the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Compresso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R'-type and T-type ones. (5) Dynamic differen- tiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming materials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a negative correlation between the gold abundance and susceptibility anlsotropy (P) of the altered mylonlte samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.展开更多
Under the guidance of the theory of mantle-branch structure-associated metallogenesis and on the basis of the geological characteristics, analysis of the ore-forming and ore-controlling structures, the geochemical cha...Under the guidance of the theory of mantle-branch structure-associated metallogenesis and on the basis of the geological characteristics, analysis of the ore-forming and ore-controlling structures, the geochemical characteristics of metallogenesis, the source of ore-forming materials, changes in the physical and chemical conditions of metallogenesis, changes in the vertical width of ore veins, and changes in gold grade of the Shihu gold deposit, the mechanism of its metallogenesis was discussed and the rules of vertical variation of ore veins were summarized in this study. It is pointed out that the orebodies under exploitation at present time should be in the middle and upper portions of gold veins in the Shihu gold mining district. Particularly on the basis of the characteristics of mantle-branch structure-associated metallogenesis, it is indicated that metallogenesis is controlled mainly by such ore-forming conditions as temperature and pressure. Deep-seated ore-forming fluids are characterized mainly by injection and precipitation. So the vein bodies in the adjacent metallogenic structures are of obvious comparability, and there would be great prospects for ore search both at depth and in the periphery of the Shihu gold deposit. Therefore, ore prospecting should be strengthened both at depth and in the peripheries.展开更多
Metallogenesis in the gold ore-concentrated zone of Northwest Shandong Peninsula is closely related to deep processes.The region in the eastern part of North China entered into the stage of mantle plume evolution duri...Metallogenesis in the gold ore-concentrated zone of Northwest Shandong Peninsula is closely related to deep processes.The region in the eastern part of North China entered into the stage of mantle plume evolution during the Yanshanian movement,following the long-time stage of stable platform evolution during Paleozoic time.At that time,the ore-concentrated zone of Northwest Shandong Peninsula just entered into the development-evolution stage of the Laiyang sub-mantle plume and the Guojiadian mantle branch structure in its periphery.The core-mantle-source gold was present in the gas-liquid form,and it migrated through mantle plume→sub-mantle plume→mantle branch structure→favorable tectonic expansion zone to the favorable loci of the mantle branch structure,where gold was deposited as ores,thereafter constituting a series of large-to medium-sized gold deposits distributed around the Guojiadian mantle branch structure.This study also dealt with the Jiaojia fault as the main detachment(fault altered rock) belt on the northwestern margin of the mantle branch structure and also presented a basic cognition about the fact that the Sanshandao fault as the listric fault on the hanging wall of the detachment belt.Furthermore,on this basis,this study also pointed out the orientation for further ore prospecting in this region.展开更多
The Mujicun Cu (Mo) ore deposit at Laiyuan, Hebei Province, is a currently proven large-sized Cu (Mo) polymetallic ore deposit and it is located in the second-ordered fault depression basin of the ditachment belt on t...The Mujicun Cu (Mo) ore deposit at Laiyuan, Hebei Province, is a currently proven large-sized Cu (Mo) polymetallic ore deposit and it is located in the second-ordered fault depression basin of the ditachment belt on the hanging-wall on the western side at the juncture of the Laiyuan dumbell-shaped complex in the northern part of the Fuping mantle-branch structure. Metallogenesis is controlled by diorite porphyrite in intrusive relation with the fault depression basin and other relevant fault structure systems and intenstive wall-rock alteration zones. This study, in conjunction with the most recent exploration data, analyzed the geological background of metallogenesis of this deposit, summaried the geological characteristics of typical ore deposits, determined the alteration zonation of the deposit, investigated regional metallogenesis and the genesis of typical ore deposits, discussed the regional ore-forming and ore-controlling structures, and generalized the regional ore-controlling model and metallogenic model of the deposit. It is considered that the Mujicun porphry Cu (Mo) deposit, the Tieling, Futuyu, Xiaoligou and other skarn-type Fe-Cu deposits and the He'ergou hydrothermal-type Pb-Zn-Ag deposit jointly constitute a three-in-one polymetallic orefield, with the characteristics of typical metallogenic series.展开更多
This work deals with the characteristics of mantle branch structure in western Shandong Province, China, with respect to the distribution characteristics and ages of the regional strata, the development of ring-like a...This work deals with the characteristics of mantle branch structure in western Shandong Province, China, with respect to the distribution characteristics and ages of the regional strata, the development of ring-like and radial faults, the development of gently inclined detachment-slip structures in the axial part, mantle-source magmatic activities, regional petrology, petrochemistry and isotope geology. The study indicated that the N-W sharply plunged ductile shear zone in the region of western Shandong cuts through the mantle rocks detached from the deep-seated North China mantle sub-plume, hence leading to unloading in response to depressurization and thereafter the formation of anatexis magma. The intense and complete magmatic evolution series not only manifests a variation trend of alkalinity of magma from high to low and its intrusive depth from deep to shallow, but also reflects that the wall-rock alteration shows a general evolution trend from strong to weak. The evolution of mantle structure played an important role in controlling endo-mineralogenesis, accompanied with the rise of the country rocks. As a result, typical mantle branch structures were formed as observed in western Shandong. At the top of the mantle branch structure was developed an obvious detachment-tilt fault block, and some endogenic ores, at the same time, were uplifted onto the shallow levels.展开更多
The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box...The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box steel structures and no damager to the static mechanical properties of the used materials, is dealt with under the guarantee of strength, rigidity, and stability. A new idea of elastic--plastic controlling design, which is mainly based on the elastic-plastic theory and experi- mental results and is different from the current design which is mainly based handbooks and design- er' s experience, is established. That is: the loading time and its effect on loaded structures are con- sidered, and the potential strength in used matcrials is fully utilized through the controlling of struc- tural strains in design. By the using of this design method, the weight and cost of box structures will be reduced in large amount.展开更多
Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the stru...Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the structure. This predictability suggests the development of a more efficient algorithm, than those that have been developed for structures under wind and seismic loads, for the active vibration control of offshore structures. The present study delveops a mutiple-step predictive optimal control (MPOC) algorithm that accounts for multiple step external loading in the determination of optimal control forces. The control efficiency of the newly developed MPOC algorithm has been Investigated under both regular (single-frequency) and irregular (multiple-frequency) wave loads, and compared with that of two other well-known optimal control algorithms: classical linear optimal control(CLOC) and instantaneous optimal control(IOC).展开更多
Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliab...Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.展开更多
Food safety issues constitute an international topic discussed by many scholars. Although there is an extensive body of literature on comparisons of food safety control practices across different governance structures...Food safety issues constitute an international topic discussed by many scholars. Although there is an extensive body of literature on comparisons of food safety control practices across different governance structures, these studies have been conducted mainly in terms of qualitative and descriptive analysis. In addition, little attention has been given to family farms. This study addresses the food safety control practices adopted by firms with different governance structures in China. Food safety control is expressed by the following aspects, i.e., pollution-free, green, organic, and/or geographical indication prod- ucts certification, establishment of production records, and pesticide residue testing. Three types of governance structures that engage in agricultural production are distinguished: farmer cooperatives, agricultural companies, and family farms. The food safety control practices of various governance structures are investigated based on a database that comprises 600 vegetable and fruit enterprises in Zhejiang, China. The results show that (1) pesticide residue testing is adopted by the most firms, followed by products certification, and production records are adopted by the fewest firms, and (2) agricul- tural companies adopt more food safety control practices than family farms, while farmer cooperatives adopt the fewest food safety control practices. Governance structure features of a cooperative in terms of ownership, decision-making, and income distribution are the main reasons for the low level of food safety control in the cooperative.展开更多
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(...The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.展开更多
In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea...In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.展开更多
This study performs a novel control effi ciency assessment approach that compares performance of optimal control algorithms regarding vibration of tensegrity structures. Due to complex loading conditions and the inher...This study performs a novel control effi ciency assessment approach that compares performance of optimal control algorithms regarding vibration of tensegrity structures. Due to complex loading conditions and the inherent characteristics of tensegrities, e.g. geometrical nonlinearity, the quantization of control effi ciency in active control of tensegrity constitutes a challenging task especially for diff erent control algorithms. As a fi rst step, an actuator energy input, comprising the strain energy of tensegrity elements and their internal forces work, is set to constant levels for the linearquadratic regulator (LQR). Afterwards, the actuator energy of the linear-quadratic Gaussian (LQG) is iterated with identical actuator energy input in LQR. A double layer tensegrity grid is employed to compare the control effi ciencies between LQR and LQG with fi ve diff erent control scenarios. The results demonstrate the effi ciency and robustness in reducing the dynamic response of tensegrity structures, and a theoretical guideline is provided to search optimal control options in controlling actual tensegrities.展开更多
A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the tem...A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the temperature and stress field of the Cao'e Sluice during the construction period. From the calculated results, we can find that the temperaiure and stress of concrete cooled with plastic pipes are much lower than those of concrete without pipes. Moreover, plastic pipes could not be corroded by seawater. That is to say, a good effect of temperature control and cracking prevention can be achieved, which provides a useful reference for other similar nearshore concrete projects.展开更多
This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of...This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LM1 toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 E1 Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.展开更多
According to the differences of structural deformation characteristics, the southern margin of the Junggar basin can be divided into two segments from east to west. Arcnate thrust-and-fold belts that protrude to the n...According to the differences of structural deformation characteristics, the southern margin of the Junggar basin can be divided into two segments from east to west. Arcnate thrust-and-fold belts that protrude to the north are developed in the eastern segment. There are three rows of en echelon thrust-and-fold belts in the western segment. Thrust and fold structures of basement-involved styles are developed in the first row, and decollement fold structures are formed from the second row to the third row. In order to study the factors controlling the deformation of structures, sand-box experiments have been devised to simulate the evolution of plane and profile deformation. The planar simulation results indicate that the orthogonal compression coming from Bogeda Mountain and the oblique compression with an angle of 75° between the stress and the boundary originating from North Tianshan were responsible for the deformation differences between the eastern part and the western part. The Miquan-Uriimqi fault in the basement is the pre-existing condition for generating fragments from east to west. The profile simulation results show that the main factors controlling the deformation in the eastern part are related to the decollement of Jurassic coal beds alone, while those controlling the deformation in the western segment are related to both the Jurassic coal beds and the Eogene clay beds. The total amount of shortening from the Yaomoshan anticline to the Gumudi anticline in the eastern part is -19.57 km as estimated from the simulation results, and the shortening rate is about 36.46%; that from the Qingshuihe anticline to the Anjihai anticline in the western part is -22.01 km as estimated by the simulation results, with a shortening rate of about 32.48%. These estimated values obtained from the model results are very close to the values calculated by means of the balanced cross section.展开更多
Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoel...Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoelastic material is characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Frequency-domain solution methods for stochastic micro-vibration response analysis of the MRE-based structural systems are developed to derive the system frequency-response function matrices and the expressions of the velocity response spectrum. With these equations, the root-mean-square (RMS) velocity responses in terms of the one-third octave frequency band spectrum can be calculated. Further, the optimization problem of the complex moduli of the MRE cores is defined by minimizing the velocity response spectra and the RMS velocity responses through altering the applied magnetic fields. Simulation results illustrate the influences of MRE parameters on the RMS velocity responses and the high response reduction capacities of the MRE-based structures. In addition, the developed frequency-domain analysis methods are applicable to sandwich beam structures with arbitrary cores characterized by complex shear moduli under stochastic excitations described by power spectral density functions, and are valid for a wide frequency range.展开更多
A system study of the three-dimensional normal stress for regulating electronic structure and magnetic property of Fe_2Ge is studied. The density states of Fe more than 92% contribution come from Fe 3d,the density sta...A system study of the three-dimensional normal stress for regulating electronic structure and magnetic property of Fe_2Ge is studied. The density states of Fe more than 92% contribution come from Fe 3d,the density states of Ge mainly contributed from Ge 4p and Ge 4s,and the Fe 3d spin induces the Ge 4p electron transfer. The inductive effect increases germanium electron energy,weakens the Fe spin density of states,opposes the stability of the ferromagnetic state. The magnetic moment varies from 5 to 3 μB with the stress charges from-30 to 30 GPa. The charge of Fe is negative whereas the Ge atom is positively charged,the Fe atom loses charge,the charge transfers to the Ge atom. The unevenly distributed charge forms the newoccupy state and spin polarization state in the Fe_2Ge electron structure system. The Fe is the electron donor,the total electron is transferred to Ge,but the total numbers of gain electron and total numbers of lost electron are not equal,so the Fe_2Ge electron system may have hybridization between the Fe 3d state and Ge 4p state.The magnetic of Fe_2Ge mainly comes from the unoccupied Fe 3d orbital,the Fe 3d is positive spinpolarization state and the spin-polarization strength is decreased,the Ge 4p is negative spin-polarization state and the spin-polarization strength are increased. M oreover,electrons-spin polarization is relevant to the structure parameters of the Fe_2Ge system,and controls spin-polarized electronic behavior by means of adjusting ferromagnetic.展开更多
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan...As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.展开更多
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
文摘A control strategy for structures subjected to earthquake actions is investigated. The strategy is inspired from the human beings reaction when they are attack by earthquake excitation. Humans realize the earthquake excitation by the neurons, sent this information to the brain, a decision is taken there and by neuron system the decision is sent it back to the muscles for suitable action. In similar way the control strategy consists of monitoring the incoming signal, analyzing it and recognizing its dynamic characteristics, applying the control algorithm for the calculation of the required action, and, finally, applying this action. Thus, the way in which the structure is controlled, and the algorithm that is used, are based on the dynamic characteristics and the frequency content of the applied earthquake signal. The algorithm transforms the earthquake signal and structure into a complex plane and, depending on their relative positions, the equivalent forces that should be applied to the structure by the control devices, which are installed on the building, are calculated. From the numerical results it is shown that the above control procedure is efficient in reducing the response of building structures subjected to earthquake loading, with small amount of required control forces. The influence of time delay and saturation capacity is taken into account. Characteristic buildings controlled by pole placement algorithm and subjected to earthquake excitation are analyzed for a range of levels of time delay and saturation capacity of the control devices. The response reduction surfaces for the combined influence of time delay and force saturation of the controlled buildings are obtained. Conclusions regarding the choice of the control system and the desired properties of the control devices are drawn.
基金This paper is supported by the National 305 Program (Nos. 2001BA609A-07-02, 2006BAB07B02-04)Research Foundation of former Ministry of Geology and Mineral Re-sources of China (No.96-21)
文摘The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt. The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and control the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Compresso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R'-type and T-type ones. (5) Dynamic differen- tiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming materials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a negative correlation between the gold abundance and susceptibility anlsotropy (P) of the altered mylonlte samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.
基金This research project is financially granted jointly by the National Natural Science Foundation of China (Grant No 40872137)the Natural Science Foundation of Hebei Province (Grant Nos D2007000751, D2008000534)
文摘Under the guidance of the theory of mantle-branch structure-associated metallogenesis and on the basis of the geological characteristics, analysis of the ore-forming and ore-controlling structures, the geochemical characteristics of metallogenesis, the source of ore-forming materials, changes in the physical and chemical conditions of metallogenesis, changes in the vertical width of ore veins, and changes in gold grade of the Shihu gold deposit, the mechanism of its metallogenesis was discussed and the rules of vertical variation of ore veins were summarized in this study. It is pointed out that the orebodies under exploitation at present time should be in the middle and upper portions of gold veins in the Shihu gold mining district. Particularly on the basis of the characteristics of mantle-branch structure-associated metallogenesis, it is indicated that metallogenesis is controlled mainly by such ore-forming conditions as temperature and pressure. Deep-seated ore-forming fluids are characterized mainly by injection and precipitation. So the vein bodies in the adjacent metallogenic structures are of obvious comparability, and there would be great prospects for ore search both at depth and in the periphery of the Shihu gold deposit. Therefore, ore prospecting should be strengthened both at depth and in the peripheries.
基金supported jointly by theScientific Basic Research Program of China’s Typical Metallic Ore Deposits (No. 200911007)the National Natural Science Foundation of China (No.40872137)
文摘Metallogenesis in the gold ore-concentrated zone of Northwest Shandong Peninsula is closely related to deep processes.The region in the eastern part of North China entered into the stage of mantle plume evolution during the Yanshanian movement,following the long-time stage of stable platform evolution during Paleozoic time.At that time,the ore-concentrated zone of Northwest Shandong Peninsula just entered into the development-evolution stage of the Laiyang sub-mantle plume and the Guojiadian mantle branch structure in its periphery.The core-mantle-source gold was present in the gas-liquid form,and it migrated through mantle plume→sub-mantle plume→mantle branch structure→favorable tectonic expansion zone to the favorable loci of the mantle branch structure,where gold was deposited as ores,thereafter constituting a series of large-to medium-sized gold deposits distributed around the Guojiadian mantle branch structure.This study also dealt with the Jiaojia fault as the main detachment(fault altered rock) belt on the northwestern margin of the mantle branch structure and also presented a basic cognition about the fact that the Sanshandao fault as the listric fault on the hanging wall of the detachment belt.Furthermore,on this basis,this study also pointed out the orientation for further ore prospecting in this region.
基金the Crisis Mine Project (20109901, 20089948) of the National Natural Science Foundation of China (40872137)Scientific Base Research Program of China's Typical Metallic Ore Deposits (200911007)
文摘The Mujicun Cu (Mo) ore deposit at Laiyuan, Hebei Province, is a currently proven large-sized Cu (Mo) polymetallic ore deposit and it is located in the second-ordered fault depression basin of the ditachment belt on the hanging-wall on the western side at the juncture of the Laiyuan dumbell-shaped complex in the northern part of the Fuping mantle-branch structure. Metallogenesis is controlled by diorite porphyrite in intrusive relation with the fault depression basin and other relevant fault structure systems and intenstive wall-rock alteration zones. This study, in conjunction with the most recent exploration data, analyzed the geological background of metallogenesis of this deposit, summaried the geological characteristics of typical ore deposits, determined the alteration zonation of the deposit, investigated regional metallogenesis and the genesis of typical ore deposits, discussed the regional ore-forming and ore-controlling structures, and generalized the regional ore-controlling model and metallogenic model of the deposit. It is considered that the Mujicun porphry Cu (Mo) deposit, the Tieling, Futuyu, Xiaoligou and other skarn-type Fe-Cu deposits and the He'ergou hydrothermal-type Pb-Zn-Ag deposit jointly constitute a three-in-one polymetallic orefield, with the characteristics of typical metallogenic series.
基金This research project was financially supported jointly by the NationaNatural Science Foundation of China (Grant No. 40272088), theLarge-scale Geological Survey in China (No. 2000110100038) and theCentral Mining Funds (2003-20).
文摘This work deals with the characteristics of mantle branch structure in western Shandong Province, China, with respect to the distribution characteristics and ages of the regional strata, the development of ring-like and radial faults, the development of gently inclined detachment-slip structures in the axial part, mantle-source magmatic activities, regional petrology, petrochemistry and isotope geology. The study indicated that the N-W sharply plunged ductile shear zone in the region of western Shandong cuts through the mantle rocks detached from the deep-seated North China mantle sub-plume, hence leading to unloading in response to depressurization and thereafter the formation of anatexis magma. The intense and complete magmatic evolution series not only manifests a variation trend of alkalinity of magma from high to low and its intrusive depth from deep to shallow, but also reflects that the wall-rock alteration shows a general evolution trend from strong to weak. The evolution of mantle structure played an important role in controlling endo-mineralogenesis, accompanied with the rise of the country rocks. As a result, typical mantle branch structures were formed as observed in western Shandong. At the top of the mantle branch structure was developed an obvious detachment-tilt fault block, and some endogenic ores, at the same time, were uplifted onto the shallow levels.
文摘The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box steel structures and no damager to the static mechanical properties of the used materials, is dealt with under the guarantee of strength, rigidity, and stability. A new idea of elastic--plastic controlling design, which is mainly based on the elastic-plastic theory and experi- mental results and is different from the current design which is mainly based handbooks and design- er' s experience, is established. That is: the loading time and its effect on loaded structures are con- sidered, and the potential strength in used matcrials is fully utilized through the controlling of struc- tural strains in design. By the using of this design method, the weight and cost of box structures will be reduced in large amount.
基金National Science Foundation of U.S.A.under grant CMS-9503533
文摘Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the structure. This predictability suggests the development of a more efficient algorithm, than those that have been developed for structures under wind and seismic loads, for the active vibration control of offshore structures. The present study delveops a mutiple-step predictive optimal control (MPOC) algorithm that accounts for multiple step external loading in the determination of optimal control forces. The control efficiency of the newly developed MPOC algorithm has been Investigated under both regular (single-frequency) and irregular (multiple-frequency) wave loads, and compared with that of two other well-known optimal control algorithms: classical linear optimal control(CLOC) and instantaneous optimal control(IOC).
基金supported by the National Natural Science Foundation of China(51175510)
文摘Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.
基金supported by the National Social Science Fund of China (13AZD079)the Zhejiang Provincial Natural Science Foundation of China (LQ14G030041 and LZ12G03003)the National Natural Science Foundation of China (71333011 and 71273234)
文摘Food safety issues constitute an international topic discussed by many scholars. Although there is an extensive body of literature on comparisons of food safety control practices across different governance structures, these studies have been conducted mainly in terms of qualitative and descriptive analysis. In addition, little attention has been given to family farms. This study addresses the food safety control practices adopted by firms with different governance structures in China. Food safety control is expressed by the following aspects, i.e., pollution-free, green, organic, and/or geographical indication prod- ucts certification, establishment of production records, and pesticide residue testing. Three types of governance structures that engage in agricultural production are distinguished: farmer cooperatives, agricultural companies, and family farms. The food safety control practices of various governance structures are investigated based on a database that comprises 600 vegetable and fruit enterprises in Zhejiang, China. The results show that (1) pesticide residue testing is adopted by the most firms, followed by products certification, and production records are adopted by the fewest firms, and (2) agricul- tural companies adopt more food safety control practices than family farms, while farmer cooperatives adopt the fewest food safety control practices. Governance structure features of a cooperative in terms of ownership, decision-making, and income distribution are the main reasons for the low level of food safety control in the cooperative.
基金financially supported by the National Natural Science Foundation of China(51972049,52073010,and 52373259)the Projects of the Science and Technology Department of Jilin Province(20230201132GX)the Projects of the Education Department of Jilin Province(JJKH20220123KJ)。
文摘The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
基金Supported by:National Science Fund for Distinguished Young Scholars of China Under Grant No. 50425824the National Natural Science Foundation of China Under Grant No.50578109,90715034 and 90715032
文摘In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.
基金Natural Science Foundation of Zhejiang Province under Grant No.LQ19E080013the International Scientific and Technological Cooperation Projects of Shaoxing University under Grant No.2019LGGH1005
文摘This study performs a novel control effi ciency assessment approach that compares performance of optimal control algorithms regarding vibration of tensegrity structures. Due to complex loading conditions and the inherent characteristics of tensegrities, e.g. geometrical nonlinearity, the quantization of control effi ciency in active control of tensegrity constitutes a challenging task especially for diff erent control algorithms. As a fi rst step, an actuator energy input, comprising the strain energy of tensegrity elements and their internal forces work, is set to constant levels for the linearquadratic regulator (LQR). Afterwards, the actuator energy of the linear-quadratic Gaussian (LQG) is iterated with identical actuator energy input in LQR. A double layer tensegrity grid is employed to compare the control effi ciencies between LQR and LQG with fi ve diff erent control scenarios. The results demonstrate the effi ciency and robustness in reducing the dynamic response of tensegrity structures, and a theoretical guideline is provided to search optimal control options in controlling actual tensegrities.
基金supported by the National Natural Science Foundation of China (Grant No. 50779010)
文摘A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the temperature and stress field of the Cao'e Sluice during the construction period. From the calculated results, we can find that the temperaiure and stress of concrete cooled with plastic pipes are much lower than those of concrete without pipes. Moreover, plastic pipes could not be corroded by seawater. That is to say, a good effect of temperature control and cracking prevention can be achieved, which provides a useful reference for other similar nearshore concrete projects.
基金National Natural Science Foundation of China Under Grant No. 50608012 and No.10472023The Cardiff Advanced Chinese Engineering Centre
文摘This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LM1 toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 E1 Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.
基金financially supported by the National Natural Science Foundation of China(No.40972091)
文摘According to the differences of structural deformation characteristics, the southern margin of the Junggar basin can be divided into two segments from east to west. Arcnate thrust-and-fold belts that protrude to the north are developed in the eastern segment. There are three rows of en echelon thrust-and-fold belts in the western segment. Thrust and fold structures of basement-involved styles are developed in the first row, and decollement fold structures are formed from the second row to the third row. In order to study the factors controlling the deformation of structures, sand-box experiments have been devised to simulate the evolution of plane and profile deformation. The planar simulation results indicate that the orthogonal compression coming from Bogeda Mountain and the oblique compression with an angle of 75° between the stress and the boundary originating from North Tianshan were responsible for the deformation differences between the eastern part and the western part. The Miquan-Uriimqi fault in the basement is the pre-existing condition for generating fragments from east to west. The profile simulation results show that the main factors controlling the deformation in the eastern part are related to the decollement of Jurassic coal beds alone, while those controlling the deformation in the western segment are related to both the Jurassic coal beds and the Eogene clay beds. The total amount of shortening from the Yaomoshan anticline to the Gumudi anticline in the eastern part is -19.57 km as estimated from the simulation results, and the shortening rate is about 36.46%; that from the Qingshuihe anticline to the Anjihai anticline in the western part is -22.01 km as estimated by the simulation results, with a shortening rate of about 32.48%. These estimated values obtained from the model results are very close to the values calculated by means of the balanced cross section.
基金Research Grants Council of the Hong Kong Special Administrative Region,China Under Grant No.PolyU 5252/07EThe Hong Kong Polytechnic University through the Development of Niche Areas Programme Under Grant No.1-BB95Zhejiang Provincial Natural Science Foundation of China Under Grant No.Y607087)
文摘Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoelastic material is characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Frequency-domain solution methods for stochastic micro-vibration response analysis of the MRE-based structural systems are developed to derive the system frequency-response function matrices and the expressions of the velocity response spectrum. With these equations, the root-mean-square (RMS) velocity responses in terms of the one-third octave frequency band spectrum can be calculated. Further, the optimization problem of the complex moduli of the MRE cores is defined by minimizing the velocity response spectra and the RMS velocity responses through altering the applied magnetic fields. Simulation results illustrate the influences of MRE parameters on the RMS velocity responses and the high response reduction capacities of the MRE-based structures. In addition, the developed frequency-domain analysis methods are applicable to sandwich beam structures with arbitrary cores characterized by complex shear moduli under stochastic excitations described by power spectral density functions, and are valid for a wide frequency range.
基金Sponsored by the Science and Technology Foundation of Guizhou Province,China(Grant Nos.LH[2016]7077,LH[2015]7218)the Youth Science and Technology Talents Growth Fund Program of GuiZhou Province Education Department,China(Grant No.KY[2016]166)the Innovation Group Major Program of Guizhou Province(Grant Nos.KY[2016]028,KY[2016]029,KY[2016]030)
文摘A system study of the three-dimensional normal stress for regulating electronic structure and magnetic property of Fe_2Ge is studied. The density states of Fe more than 92% contribution come from Fe 3d,the density states of Ge mainly contributed from Ge 4p and Ge 4s,and the Fe 3d spin induces the Ge 4p electron transfer. The inductive effect increases germanium electron energy,weakens the Fe spin density of states,opposes the stability of the ferromagnetic state. The magnetic moment varies from 5 to 3 μB with the stress charges from-30 to 30 GPa. The charge of Fe is negative whereas the Ge atom is positively charged,the Fe atom loses charge,the charge transfers to the Ge atom. The unevenly distributed charge forms the newoccupy state and spin polarization state in the Fe_2Ge electron structure system. The Fe is the electron donor,the total electron is transferred to Ge,but the total numbers of gain electron and total numbers of lost electron are not equal,so the Fe_2Ge electron system may have hybridization between the Fe 3d state and Ge 4p state.The magnetic of Fe_2Ge mainly comes from the unoccupied Fe 3d orbital,the Fe 3d is positive spinpolarization state and the spin-polarization strength is decreased,the Ge 4p is negative spin-polarization state and the spin-polarization strength are increased. M oreover,electrons-spin polarization is relevant to the structure parameters of the Fe_2Ge system,and controls spin-polarized electronic behavior by means of adjusting ferromagnetic.
基金Supported by Fundamental Research Funds for the Central Universities of China (Grant No.2023JBZY020)Transformation Cultivation Program of Scientific and Technological Achievements from Beijing Jiaotong University of China (Grant No.M21ZZ200010)。
文摘As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.