The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively uniq...The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively unique. On the basis of geological features such as the contents of mineralization elements, the REE concentrations of gangue calcites, the REE concentrations of calcite veins in the NE-trending tectonic zone and the Pb, Sr, C, H and O isotopic compositions of different minerals, this paper presents that the ore-forming materials and ore-forming fluids of the deposit were derived from various types of strata or rocks. This is a very significant conclusion for us to further discuss the mineralization mechanism of the deposit at depth and establish an available genetic model.展开更多
1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan...1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan lead and zinc展开更多
The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (IC...The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.展开更多
The Jinshan gold deposit is located in the Northeast Jiangxi province,South China,which related to the ductile shear zone.It contains two ore types,i.e.the alteration-type ore and the goldbearing quartz vein ore.Rb-Sr...The Jinshan gold deposit is located in the Northeast Jiangxi province,South China,which related to the ductile shear zone.It contains two ore types,i.e.the alteration-type ore and the goldbearing quartz vein ore.Rb-Sr age dating is applied to both gold-bearing pyrite in the alteration-type ore and fluid inclusion in the gold-bearing quartz vein to make clear the time of the gold mineralization of the Jinshan deposit.Analytical results of this study yielded that the age of the alteration-type ore bodies is about 838±110Ma,with an initial 87Sr/86Sr value of 0.7045±0.0020.However,the age of the gold-bearing quartz vein-type ore is about 379±49Ma,and the initial 87Sr/86Sr is 0.7138±0.0011.Based on the age data from this work and many previous studies,the authors consider that the Jinshan gold deposit is a product of multi-staged mineralization,which may include the Jinninian,Caledonian,Hercynian,and Yanshanian Periods.Among them,the Jinninian Period and the Hercynian Period might be the two most important ore-forming periods for Jinshan deposit.The Jinninian Period is the main stage for the formation of alteration-type ore bodies,while the Hercynian Period is the major time for ore bodies of gold-bearing quartz vein type.The initial values of the 87Sr/86Sr from this study,as well as the previous isotope and trace element studies,indicate that the ore-forming materials mainly derived from the metamorphic wall rocks,and the ore-forming fluids mainly originated from the deep metamorphic water.展开更多
Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming...Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during展开更多
Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Gui...Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.展开更多
The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrome...The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The REE of deposit ore of the Laowan gold deposit, wall-rock and Laowan granite also were studied to trace the source of metallogenic materials in Laowan gold deposit in detail. The range of ∑ REE in quartz and pyrite from gold deposit is 4.18 × 10^-6 - 30.91 × 10^-6, average of 13.39 × 10^-6, 6.68 × 10^-6 of the Laowan granite quartz, obviously lower to REE concentration of deposit, granite and wall-rock. The value of (La/ Yb)N and (La/Sm)N of ore minerals from the gold deposit is 13.23 and 4.17 respectively. The differences in REE parameters, such as δEu, δCe and diffusion degree in REE from light to heavy, among deposit ore minerals and granite mineral are weak. Especially, there are no differences between the chondrite-normalised REE curves of minerals from gold deposit and those of quartzs in Laowan granite, no similarity to wall-rock', which shows that ore-forming hydrothermal fluid mainly came from magma fluid resulting from the Laowan granite magma, metamorphic fluid in few. The results also show that REE characteristics of ore minerals in deposit are effective for disclosing oreforming fluid quality comparing with deposit ore'REE compositions.展开更多
Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have ...Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have investigated the geological characteristics,geochemistry and fluid inclusions of this deposit.展开更多
The Xiajinbao gold deposit is located in Yong’an-Xiayingfang-Maojiagou polymetallic metallogenic belt,which is animportant metallogenic belt in North China block.In this paper,we present a detailed study on fluid inc...The Xiajinbao gold deposit is located in Yong’an-Xiayingfang-Maojiagou polymetallic metallogenic belt,which is animportant metallogenic belt in North China block.In this paper,we present a detailed study on fluid inclusions and stable isotopes ofthe Xiajinbao gold deposit,Hebei Province,China,aiming at discussing the ore source,evolution of ore-forming fluid andore-forming mechanism of the deposit.The macroscopic geological characteristics,S and Pb isotopic analysis results show that thesource of ore-forming materials is mainly from granitic magma,and subordinately from country rocks.H and O isotopic compositionfeatures indicate that the ore-forming fluid is mainly derived from magmatic water.Fluid inclusion characteristics show that theore-forming fluid experienced boiling during the early mineralization stage,which led to the precipitation of gold.Fluid mixingdominated the precipitation of the ore-forming materials during the middle and late stages.The gold precipitation was caused bywater/rock reaction throughout the whole ore-forming process.展开更多
THE Laowangzhai superlarge gold deposit was found in 1984. Although studies on regional structure, geology of deposits and lamprophyres, which are temporally and spatially related to gold mineralization,have been carr...THE Laowangzhai superlarge gold deposit was found in 1984. Although studies on regional structure, geology of deposits and lamprophyres, which are temporally and spatially related to gold mineralization,have been carried out, the views on the source of ore-forming materials have been different. Thisnote summarized the characteristics of lead isotopic composition of the deposits, and probed further intothe source of ore-forming materials. 1 Geological setting The Laowangzhai gold deposit, located in the north of the Ailaoshan fault zone, consists of Donggualin and Laowangzhai ore block. The strata in the orefield include Paleozoic (Pz<sub>3</sub>) epimetamorphic ma-展开更多
The macroscopic and microscopic studies (in mineral inclusions, stable isotopes, traceelements, etc.) on the Donchuan-Yimen type copper deposits show that the ore material deriv-ed from host rocks and their underlying...The macroscopic and microscopic studies (in mineral inclusions, stable isotopes, traceelements, etc.) on the Donchuan-Yimen type copper deposits show that the ore material deriv-ed from host rocks and their underlying beds, and Bi, Pb, Zn probably did from deep frac-tures. The ore-forming fluid is hot brine in nature, and the water in it is probably stratumwater in origin. The sulphur derived from bacteria reducing of sulphate in sea water. Thecarbon derived from marine carbonate. The organic carbon plays an important role in themetallogenesis. In the Kangdian Axis, two deep fractures controlled the sedimentation of thecupriferous algal reef carbonate formation. They were ore-, heat-, brine-conducting tectonicsand led to the formation and transformation of many copper ore beds.展开更多
The source and evolution of ore-forming fluids is important to understand the genesis of Carlin-type gold deposit.Constraints on the source and evolution of ore fluid components by the con-ventional geochemical method...The source and evolution of ore-forming fluids is important to understand the genesis of Carlin-type gold deposit.Constraints on the source and evolution of ore fluid components by the con-ventional geochemical methods have long been a challenge due to the very fine-grained nature and complex textures of hydrothermal minerals in these deposits.In this study,we present the crush-leach analyzed solute data of fluid inclusion extracts within quartz,calcite,realgar,and fluorite from the Shuiyindong,Nibao,and Yata gold deposits in the Youjiang Basin,providing new insights into the source and evolution of ore-forming fluids.The results show that the high molar Cl/Br ratios up to 2508 in fluid inclusion extracts are indicative of a contribution of magmatic hydrothermal fluids.Flu-ids mixing between basinal and magmatic-hydrothermal fluids are evident on the plots of Cl/Br versus Na/K ratios,showing that ore-stage milky quartz near the magmatic-hydrothermal fluids reflects magma origin of the ore-forming fluids,whereas late ore-stage drusy quartz and realgar near the de-fined basinal fluids suggest the later input of basinal fluids in late-ore stage.Although the predominate-ly host rocks in Shuiyindong,Nibao and Yata gold deposit are bioclastic limestone,sedimentary tuff,and calcareous siltstone,respectively,the solute data of fluid inclusion extracts records they underwent the similar fluid-rocks reactions between the Na-rich magmatic hydrothermal fluids and the Ca-and Mg-rich host rocks.This study highlights the solute data of fluid inclusion extracts obtained by crush-leach analyses have the potential to fingerprint the source and evolution of ore-forming fluids of the Carlin-type gold deposit.展开更多
Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nib...Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.展开更多
为探究东海扬子浅滩晚更新世沉积物的来源,对该区域的YZ05钻孔MIS6阶段沉积物中的石英流体包裹体进行了岩相学分析,并与长江干流表层沉积物中的流体包裹体进行对比研究。结果显示,YZ05钻孔晚更新世沉积物中单位体积(0.001 mm3)石英颗粒...为探究东海扬子浅滩晚更新世沉积物的来源,对该区域的YZ05钻孔MIS6阶段沉积物中的石英流体包裹体进行了岩相学分析,并与长江干流表层沉积物中的流体包裹体进行对比研究。结果显示,YZ05钻孔晚更新世沉积物中单位体积(0.001 mm3)石英颗粒的包裹体数量在17~47个之间,个体大小多为2~5μm,以孤立分布为主。其中次生包裹体数量较多,约占包裹体总数的88%~96%,原生包裹体以椭圆或四边形居多,室温下多为富液相,气液比大多为10%~30%。研究区及现代长江干流表层沉积物中的流体包裹体形态较为一致。此外,研究还发现了颈缩形态的包裹体及气液比大于80%的富气相原生包裹体,此类包裹体在长江上游石鼓地区较为常见。因此,可以推测晚更新世时(至少在47 ka BP),长江上游物质已经到达扬子浅滩西南海域。展开更多
文摘The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively unique. On the basis of geological features such as the contents of mineralization elements, the REE concentrations of gangue calcites, the REE concentrations of calcite veins in the NE-trending tectonic zone and the Pb, Sr, C, H and O isotopic compositions of different minerals, this paper presents that the ore-forming materials and ore-forming fluids of the deposit were derived from various types of strata or rocks. This is a very significant conclusion for us to further discuss the mineralization mechanism of the deposit at depth and establish an available genetic model.
文摘1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan lead and zinc
文摘The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.
基金supported by the National Natural Science Foundation of China (No. 41202083, 40373025)the Research Award Fund for Outstanding Middle-aged and Young Scientist of Shandong Province (BS2013HZ024)
文摘The Jinshan gold deposit is located in the Northeast Jiangxi province,South China,which related to the ductile shear zone.It contains two ore types,i.e.the alteration-type ore and the goldbearing quartz vein ore.Rb-Sr age dating is applied to both gold-bearing pyrite in the alteration-type ore and fluid inclusion in the gold-bearing quartz vein to make clear the time of the gold mineralization of the Jinshan deposit.Analytical results of this study yielded that the age of the alteration-type ore bodies is about 838±110Ma,with an initial 87Sr/86Sr value of 0.7045±0.0020.However,the age of the gold-bearing quartz vein-type ore is about 379±49Ma,and the initial 87Sr/86Sr is 0.7138±0.0011.Based on the age data from this work and many previous studies,the authors consider that the Jinshan gold deposit is a product of multi-staged mineralization,which may include the Jinninian,Caledonian,Hercynian,and Yanshanian Periods.Among them,the Jinninian Period and the Hercynian Period might be the two most important ore-forming periods for Jinshan deposit.The Jinninian Period is the main stage for the formation of alteration-type ore bodies,while the Hercynian Period is the major time for ore bodies of gold-bearing quartz vein type.The initial values of the 87Sr/86Sr from this study,as well as the previous isotope and trace element studies,indicate that the ore-forming materials mainly derived from the metamorphic wall rocks,and the ore-forming fluids mainly originated from the deep metamorphic water.
文摘Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during
文摘Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.
文摘The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The REE of deposit ore of the Laowan gold deposit, wall-rock and Laowan granite also were studied to trace the source of metallogenic materials in Laowan gold deposit in detail. The range of ∑ REE in quartz and pyrite from gold deposit is 4.18 × 10^-6 - 30.91 × 10^-6, average of 13.39 × 10^-6, 6.68 × 10^-6 of the Laowan granite quartz, obviously lower to REE concentration of deposit, granite and wall-rock. The value of (La/ Yb)N and (La/Sm)N of ore minerals from the gold deposit is 13.23 and 4.17 respectively. The differences in REE parameters, such as δEu, δCe and diffusion degree in REE from light to heavy, among deposit ore minerals and granite mineral are weak. Especially, there are no differences between the chondrite-normalised REE curves of minerals from gold deposit and those of quartzs in Laowan granite, no similarity to wall-rock', which shows that ore-forming hydrothermal fluid mainly came from magma fluid resulting from the Laowan granite magma, metamorphic fluid in few. The results also show that REE characteristics of ore minerals in deposit are effective for disclosing oreforming fluid quality comparing with deposit ore'REE compositions.
基金financially supported by the National Natural Science Foundation of China(grant No.41303026)
文摘Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have investigated the geological characteristics,geochemistry and fluid inclusions of this deposit.
基金Project(2015CX008) supported by the Innovation Driven Plan of Central South University,China
文摘The Xiajinbao gold deposit is located in Yong’an-Xiayingfang-Maojiagou polymetallic metallogenic belt,which is animportant metallogenic belt in North China block.In this paper,we present a detailed study on fluid inclusions and stable isotopes ofthe Xiajinbao gold deposit,Hebei Province,China,aiming at discussing the ore source,evolution of ore-forming fluid andore-forming mechanism of the deposit.The macroscopic geological characteristics,S and Pb isotopic analysis results show that thesource of ore-forming materials is mainly from granitic magma,and subordinately from country rocks.H and O isotopic compositionfeatures indicate that the ore-forming fluid is mainly derived from magmatic water.Fluid inclusion characteristics show that theore-forming fluid experienced boiling during the early mineralization stage,which led to the precipitation of gold.Fluid mixingdominated the precipitation of the ore-forming materials during the middle and late stages.The gold precipitation was caused bywater/rock reaction throughout the whole ore-forming process.
文摘THE Laowangzhai superlarge gold deposit was found in 1984. Although studies on regional structure, geology of deposits and lamprophyres, which are temporally and spatially related to gold mineralization,have been carried out, the views on the source of ore-forming materials have been different. Thisnote summarized the characteristics of lead isotopic composition of the deposits, and probed further intothe source of ore-forming materials. 1 Geological setting The Laowangzhai gold deposit, located in the north of the Ailaoshan fault zone, consists of Donggualin and Laowangzhai ore block. The strata in the orefield include Paleozoic (Pz<sub>3</sub>) epimetamorphic ma-
基金the National Natural Science Foundation of China.
文摘The macroscopic and microscopic studies (in mineral inclusions, stable isotopes, traceelements, etc.) on the Donchuan-Yimen type copper deposits show that the ore material deriv-ed from host rocks and their underlying beds, and Bi, Pb, Zn probably did from deep frac-tures. The ore-forming fluid is hot brine in nature, and the water in it is probably stratumwater in origin. The sulphur derived from bacteria reducing of sulphate in sea water. Thecarbon derived from marine carbonate. The organic carbon plays an important role in themetallogenesis. In the Kangdian Axis, two deep fractures controlled the sedimentation of thecupriferous algal reef carbonate formation. They were ore-, heat-, brine-conducting tectonicsand led to the formation and transformation of many copper ore beds.
基金This study is supported by the Natural Science Foundation of China(Nos.41802094,U1812402)the National Basic Research Program(No.2014CB440906).
文摘The source and evolution of ore-forming fluids is important to understand the genesis of Carlin-type gold deposit.Constraints on the source and evolution of ore fluid components by the con-ventional geochemical methods have long been a challenge due to the very fine-grained nature and complex textures of hydrothermal minerals in these deposits.In this study,we present the crush-leach analyzed solute data of fluid inclusion extracts within quartz,calcite,realgar,and fluorite from the Shuiyindong,Nibao,and Yata gold deposits in the Youjiang Basin,providing new insights into the source and evolution of ore-forming fluids.The results show that the high molar Cl/Br ratios up to 2508 in fluid inclusion extracts are indicative of a contribution of magmatic hydrothermal fluids.Flu-ids mixing between basinal and magmatic-hydrothermal fluids are evident on the plots of Cl/Br versus Na/K ratios,showing that ore-stage milky quartz near the magmatic-hydrothermal fluids reflects magma origin of the ore-forming fluids,whereas late ore-stage drusy quartz and realgar near the de-fined basinal fluids suggest the later input of basinal fluids in late-ore stage.Although the predominate-ly host rocks in Shuiyindong,Nibao and Yata gold deposit are bioclastic limestone,sedimentary tuff,and calcareous siltstone,respectively,the solute data of fluid inclusion extracts records they underwent the similar fluid-rocks reactions between the Na-rich magmatic hydrothermal fluids and the Ca-and Mg-rich host rocks.This study highlights the solute data of fluid inclusion extracts obtained by crush-leach analyses have the potential to fingerprint the source and evolution of ore-forming fluids of the Carlin-type gold deposit.
基金supported by the National Natural Science Fund of China (41962008)the Talent Team Program of Guizhou Science and Technology Fund (Qianke Pingtairen Caixintang[2021]007)+3 种基金the Geological Exploration Fund Project of Guizhou Province (520000214TLCOG7DGTDRG)the National Natural Science Foundation of China (U1812402)Scientific Research Project of Hubei Geological Bureau (KJ2022-21)the Graduate Research Fund of Guizhou Province (YJSCXJH [2020] 095)。
文摘Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.
文摘为探究东海扬子浅滩晚更新世沉积物的来源,对该区域的YZ05钻孔MIS6阶段沉积物中的石英流体包裹体进行了岩相学分析,并与长江干流表层沉积物中的流体包裹体进行对比研究。结果显示,YZ05钻孔晚更新世沉积物中单位体积(0.001 mm3)石英颗粒的包裹体数量在17~47个之间,个体大小多为2~5μm,以孤立分布为主。其中次生包裹体数量较多,约占包裹体总数的88%~96%,原生包裹体以椭圆或四边形居多,室温下多为富液相,气液比大多为10%~30%。研究区及现代长江干流表层沉积物中的流体包裹体形态较为一致。此外,研究还发现了颈缩形态的包裹体及气液比大于80%的富气相原生包裹体,此类包裹体在长江上游石鼓地区较为常见。因此,可以推测晚更新世时(至少在47 ka BP),长江上游物质已经到达扬子浅滩西南海域。