China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major ...China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major controlling factors.This study compared the geological characteristics of various shales and analyzed the influences of different parameters on the formation and accumulation of shale gas.In general,shales in China’s several regions exhibit high total organic carbon(TOC)contents,which lays a sound material basis for shale gas generation.Marine strata generally show high degrees of thermal evolution.In contrast,continental shales manifest low degrees of thermal evolution,necessitating focusing on areas with relatively high degrees of thermal evolution in the process of shale gas surveys for these shales.The shales of the Wufeng and Silurian formations constitute the most favorable shale gas reservoirs since they exhibit the highest porosity among the three types of shales.These shales are followed by those in the Niutitang and Longtan formations.In contrast,the shales of the Doushantuo,Yanchang,and Qingshankou formations manifest low porosities.Furthermore,the shales of the Wufeng and Longmaxi formations exhibit high brittle mineral contents.Despite a low siliceous mineral content,the shales of the Doushantuo Formation feature a high carbonate mineral content,which can increase the shales’brittleness to some extent.For marine-continental transitional shales,where thin interbeds of tight sandstone with unequal thicknesses are generally found,it is recommended that fracturing combined with drainage of multiple sets of lithologic strata should be employed to enhance their shale gas production.展开更多
No substantial breakthroughs have been made in hydrocarbon exploration of the South Yellow Sea Basin.It is believed that the Mesozoic-Paleozoic marine sedimentary formation in the South Yellow Sea Basin is similar to ...No substantial breakthroughs have been made in hydrocarbon exploration of the South Yellow Sea Basin.It is believed that the Mesozoic-Paleozoic marine sedimentary formation in the South Yellow Sea Basin is similar to that in the Sichuan Basin.Therefore,outcrop,drilling,and seismic data were determined and compared with the research results on petroleum geological conditions in the Yangtze land area,and the hydrocarbon geological conditions were analyzed comprehensively from multiple aspects,such as basin evolution and main source rocks,reservoir characteristics,preservation conditions,and structural traps.The results show that two main stages in the South Yellow Sea Basin(the stable evolution stage of the Mesozoic-Paleozoic marine basin and the Mesozoic-Cenozoic tectonic reformation and basin formation stage)were important for the development and evolution of four sets of main source rocks.Reservoirs dominated by carbonate rocks,three sets of capping beds with good sealing capability,relatively weak magmatic activity,and multiple types of structural traps jointly constituted relatively good hydrocarbon-reservoir-forming conditions.There were four sets of main source-reservoir-cap assemblages and three possible hydrocarbon reservoir types(primary residual-type hydrocarbon reservoir,shallow reformed-type hydrocarbon reservoir,and composite-type hydrocarbon reservoir)developed in the marine strata.It is concluded that the marine strata in the South Yellow Sea Basin have relatively good hydrocarbon potential.The Laoshan Uplift is characterized by stable structure,complete preserved source reservoir cap assemblage,and large structural traps,and thus it is the preferred prospect zone for marine Paleozoic hydrocarbon exploration in this area.展开更多
The presence of shale gas has been confirmed in almost every marine shale distribution area in North America.Formation conditions of shale gas in China are the most favorable for marine,organic-rich shale as well.But ...The presence of shale gas has been confirmed in almost every marine shale distribution area in North America.Formation conditions of shale gas in China are the most favorable for marine,organic-rich shale as well.But there has been little research focusing on shale gas in Qiangtang Basin,Qinghai-Tibet Plateau,where a lot of Mesozoic marine shale formations developed.Based on the survey results of petroleum geology and comprehensive test analysis data for Qinghai-Tibet Plateau,for the first time,this paper discusses characteristics of sedimentary development,thickness distribution,geochemistry,reservoir and burial depth of organic-rich shale,and geological conditions for shale gas formation in Qiangtang Basin.There are four sets of marine shale strata in Qiangtang Basin including Upper Triassic Xiaochaka Formation (T3x),Middle Jurassic Buqu Formation (J2b),Xiali Formation (J2x) and Upper Jurassic Suowa Formation (J3s),the sedimentary types of which are mainly bathyal-basin facies,open platform-platform margin slope facies,lagoon and tidal-fiat facies,as well as delta facies.By comparing it with the indicators of gas shale in the main U.S.basins,it was found that the four marine shale formations in Qiangtang Basin constitute a multi-layer distribution of organic-rich shale,featuring a high degree of thickness and low abundance of organic matter,high thermal evolution maturity,many kinds of brittle minerals,an equivalent content of quartz and clay minerals,a high content of feldspar and low porosity,which provide basic conditions for an accumulation of shale gas resources.Xiaochaka Formation shale is widely distributed,with big thickness and the best gas generating indicators.It is the main gas source layer.Xiali Formation shale is of intermediate thickness and coverage area,with relatively good gas generating indicators and moderate gas formation potential.Buqu Formation shale and Suowa Formation shale are of relatively large thickness,and covering a small area,with poor gas generating indicators,and limited gas formation potential.The shale gas geological resources and technically recoverable resources were estimated by using geologic analogy method,and the prospective areas and potentially favorable areas for Mesozoic marine shale gas in Qiangtang Basin are forecast and analyzed.It is relatively favorable in a tectonic setting and indication of oil and gas,shale maturity,sedimentary thickness and gypsum-salt beds,and in terms of mineral association for shale gas accumulation.But the challenge lies in overcoming the harsh natural conditions which contributes to great difficulties in ground engineering and exploration,and high exploration costs.展开更多
Focusing on the Yangtze River economic zone,the previous geological researches are systematically summarized,resources and environment conditions and major geological problems which are needing to be concerned in land...Focusing on the Yangtze River economic zone,the previous geological researches are systematically summarized,resources and environment conditions and major geological problems which are needing to be concerned in land planning and construction are studied.The results show that the resource conditions of cultivated land,shale gas,geotherm,lithium and so on are superior in the Yangtze River economic zone,and the resources and environment conditions are conducive to develop the modern agriculture,clean energy industry and strategic emerging industries.3×1013 m^2 farmlands without heavy metal pollution are concentrated;there are three national level shale gas exploration and development bases with explored reserves of 5.441×1011 m^3;geothermal availability is 2.4×109 t of standard coal each year,equivalent to 19% of the amount of coal in 2014;Asia's largest energy lithium metal ore deposit is found.In some parts of Yangtze River economic zone,there are some major geological problems such as active faults,karst collapse,ground subsidence,landslide-collapse-debris flow,affecting the river-crossing channels,high-speed railway,urban agglomeration and green ecological corridor planning and construction.Those problems should be concerned,and the relevant suggestions and countermeasures are put forward.Meanwhile,the ideas to further support the development of the Yangtze River economic zone are put forward.展开更多
Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rock...Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rocks,favorable reservoir facies belts,hydrocarbon migration direction and reservoir-forming law in the Ordos Basin have been studied from the viewpoints of North China Craton breakup and Qilian-Qinling oceanic basin opening and closing.Four main results are obtained:(1)Controlled by deep-water shelf-rift,there are three suites of source rocks in the Ordos Basin and its periphery:Mesoproterozoic,Lower Cambrian and Middle-Upper Ordovician.(2)Controlled by littoral environment,paleo-uplift and platform margin,four types of reservoirs are developed in the area:Mesoproterozoic-Lower Cambrian littoral shallow sea quartz sandstone,Middle-Upper Cambrian–Ordovician weathering crust and dolomitized reservoir,and Ordovician L-shape platform margin reef and beach bodies.(3)Reservoir-forming assemblages vary greatly in the study area,with"upper generation and lower storage"as the main pattern in the platform,followed by"self-generation and self-storage".There are both"upper generation and lower storage"and"self-generation and self-storage"in the platform margin zone.In addition,in the case of communication between deep-large faults and the Changchengian system paleo-rift trough,there may also exist a"lower generation and upper reservoir"combination between the platform and the margin.(4)There are four new exploration fields including Qingyang paleo-uplift pre-Carboniferous weathering crust,L-shape platform margin zone in southwestern margin of the basin,Ordovician subsalt assemblage in central and eastern parts of the basin,and Mesoproterozoic–Cambrian.Among them,pre-Carboniferous weathering crust and L-shape platform margin facies zone are more realistic replacement areas,and Ordovician subsalt assemblage and the Proterozoic-Cambrian have certain potential and are worth exploring.展开更多
The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an import...The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an important component of the giant tectonic belt in central China (the Kunlun-Qilian-Qinling Tectonic Belt or the Central Orogenic Belt). Many known ore-forming belts such as the Kunlun-Qilian Qinling ore-forming zone, Sanjiang (or Three river) ore-forming zone, Central Asian ore-forming zone, etc. pass through the West Kunlun area. Three ore-forming zones and seven ore-forming subzones were classified, and eighteen mineralization areas were marked. It is indicated that the West Kunlun area is one of the most favorable region for finding out large and superlarge ore deposits.展开更多
This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility ...This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility of spatial identification of cave spaces using surface geophysical methods due to the specific engineering-geological conditions of a thick surface layer of anthropogenic fill containing highly heterogeneous anthropogenic material.Its maximum thickness is 3 m.Another specificific condition of the study area is its location in the built-up area,due to which the applicability of geophysical methods was limited.The article contains methodological recommendations to be used in analogous geological conditions with karst structures topped with anthropogenic fill,which complicates the identification of cave spaces.The recommended solution herein is the identification of the cave system using underground mapping of the karst and its projection onto the surface for which surface geophysical methods have been combined.展开更多
Almost all the coal is produced from open cut mines in Indonesia. As a consequence of open cut mine application, a great deal of coal is left out in the highwalls of the mined-out pits. Highwall mining systems can be ...Almost all the coal is produced from open cut mines in Indonesia. As a consequence of open cut mine application, a great deal of coal is left out in the highwalls of the mined-out pits. Highwall mining systems can be used to recover this coal. The use of highwall mining systems has increasingly come into play in the US and Australia. However, it is not common in Indonesia. Moreover, Indonesia coal measure is categorized as weak geological condition. Some problems are likely to arise during the application of the highwall mining system for example instability of openings and highwalls due to the roof and pillar failures. Therefore, study of highwall mining system application in Indonesia is needed in order to increase the recovery rate of coal mining in Indonesia. This paper described the characteristics of the highwa!l mining system and discussed the appropriate highwall mining system application in weak geological condition, Indonesia. From the results of a series of laboratory tests and numerical analyses, it can be concluded that the stability of pillars and mine openings in auger mining systems is much higher than that in CHM and an auger mining system is suitable for such as very weak/poor strata conditions. Moreover, the application of backfilling system is very effective for improvement of the stability of pillar and openings.展开更多
The South Yellow Sea Basin(SYSB) has multiple sets of proven source rocks and good hydrocarbon prospects,but no industrial oil and gas has been explored at present.To solve this puzzle for petroleum geologists,we syst...The South Yellow Sea Basin(SYSB) has multiple sets of proven source rocks and good hydrocarbon prospects,but no industrial oil and gas has been explored at present.To solve this puzzle for petroleum geologists,we systematically investigated the marine hydrocarbon geological conditions based on cores and testing data from borehole CSDP-2,the first exploration well with continuous coring in SYSB.The qualities of source rocks are evaluated in detail according to organic matter abundance,type,and maturity.The reservoir characterization mainly includes porosity,permeability,and reservoir space.Displacement pressure test and stratum thickness are the main foundations for defining the caprocks.Then,the oil-source rock correlation in the Permian and stratum model are analyzed to determine the favorable source-reservoir-caprock assemblages.The results show that three sets of effective source rocks(the Lower Triassic,Upper Permian,and Lower Permian),two sets of tight sandstone re servoirs(the Upper Permian and Lower Silurian-Upper Devonian),and two sets of caprocks(the Lower Triassic and Carboniferous) combine to constitute the hydrocarbon reservoir-forming as se mblages of "lower-ge neration and upper-accumlation" and "self-generation and self-accumlation",thus laying a solid foundation for promising petroleum prospects.The three sets of marine source rocks are characterized by successive generation and expulsion stages,which guarantees multistage hydrocarbon accumulation.Another three sets of continental source rocks distributed across the Middle Jurassic,Upper Cretaceous,and Paleogene depression areas,especially in the Northern Depression,may supplement some hydrocarbons for the Central Uplift through faults and the Indosinian unconformity.The favorable Permian exploration strata have been identified in the Central Uplift of SYSB.First,the Lower Permian and Upper Permian source rocks with high organic matter abundance and high thermal maturity supply sufficient hydrocarbons.Secondly,the interbedding relationship between the source rocks and sandstones in the Upper Permian strata ensures that hydrocarbons have been migrated into the nearby Upper Permian sandstones,reflecting near-source hydrocarbon accumulation.Finally,the good sealing property of the Lower Triassic Qinglong Formation caprocks plays an indispensable role in hydrocarbon preservation of the Permian reservoirs.This conclusion is supported by direct oil shows,gas logging anomalous layers,and hydrocarbon-bearing fluid inclusions.展开更多
Coal roadway support is the foundation and strong guarantee of safe coal production. With the FLAC3D numerical simulation, the roadway fulllength anchor support mechanism was studied, and the full-length anchor forcet...Coal roadway support is the foundation and strong guarantee of safe coal production. With the FLAC3D numerical simulation, the roadway fulllength anchor support mechanism was studied, and the full-length anchor forcetransferring mechanism and stressfield distribution formed by roadway surrounding rocks were analyzed, which will provide a scientific basis for a support technology in large-section roadways under complicated geological conditions and lay a foundation for the popularization and application of a full-length anchor support system under special geological conditions.展开更多
The goal of this study is to determine the geometrical and geotechnical characteristics of landslides under various geological conditions using detailed field surveys, laboratory soil tests and precipitation records. ...The goal of this study is to determine the geometrical and geotechnical characteristics of landslides under various geological conditions using detailed field surveys, laboratory soil tests and precipitation records. Three study areas are selected to consider different rocks, including gneiss in Jangheung, granite in Sangju and sedimentary rocks in Pohang, South Korea. Many landslides have occurred in these three areas during the rainy season.Precipitation records indicate that landslides occurring in the gneiss area of Jangheung and granite area of Sangju may be influenced by the hourly rainfall intensity rather than cumulative rainfall.However, landslides occurring in the sedimentary rock area of Pohang may be influenced by hourly rainfall intensity and cumulative rainfall. To investigate the factors that influence these types of landslides, a detailed landslide survey was performed and a series of laboratory soil tests were conducted.According to the detailed field survey, most landslides occurred on the flanks of mountain slopes, and the slope inclination where they occurred mostly ranged from 26 to 30 degrees, regardless of the geological conditions. The landslide in the gneiss area of Jangheung is larger than the landslides in the granite area of Sangju and sedimentary rock area of Pohang.Particularly, the landslide in the sedimentary rock area is shorter and shallower than the landslides in the gneiss and granite areas. Thus, the shape and size of the landslide are clearly related to the geological conditions. According to the integrated soil property and landslide occurrence analyses results, the average dry unit weight of the soils from the landslide sites is smaller than that of the soils obtained from the nonlandslide site. The average coefficient of permeability of soils obtained from the landslide sites is greater than that of soils obtained from the non-landslide sites with the same geology. These results indicate that the soils from the landslide sites are more poorly graded or looser than the soils from the non-landslide sites.展开更多
A novel optimization methodology for the disc cutter designs of tunnel boring machines (TBM) was presented. To fully understand the characteristics and performance of TBM cutters, a comprehensive list of performance p...A novel optimization methodology for the disc cutter designs of tunnel boring machines (TBM) was presented. To fully understand the characteristics and performance of TBM cutters, a comprehensive list of performance parameters were investigated, including maximum equivalent stress and strain, specific energy and wear life which were closely related to the cutting forces and profile geometry of the cutter rings. A systematic method was employed to evaluate an overall performance index by incorporating objectives at all possible geological conditions. The Multi-objective & Multi-geologic Conditions Optimization (MMCO) program was then developed, which combined the updating of finite element model, system evaluation, finite element solving, post-processing and optimization algorithm. Finally, the MMCO was used to optimize the TBM cutters used in a TBM tunnel project in China. The results show that the optimization significantly improves the working performances of the cutters under all geological conditions considered.展开更多
Lower Paleozoic carbonate rocks are an important exploration area in craton area of the Tarim Basin,with the proven oil and gas reserves of more than 2.2×10^8 t,but no large-scale discovery has been made in the G...Lower Paleozoic carbonate rocks are an important exploration area in craton area of the Tarim Basin,with the proven oil and gas reserves of more than 2.2×10^8 t,but no large-scale discovery has been made in the Gucheng area so far.The key issues restricting exploration are that the source rock,reservoir scale and law of oil and gas enrichment are unclear.By systematically examining the petroleum geological conditions of Lower Paleozoic carbonate rocks,the following findings are reached:(1)Source rocks of slope-basin facies developed in Cambrian-Lower Ordovician in the Gucheng area.(2)The dolomitized beach in the lower part of Ordovician Yingshan Formation has large-scale reservoirs,good reservoir-cap assemblage and developed gas source faults,and is an important field for increasing reserves and production in the near future;hydrocarbon enrichment is controlled by reservoir and gas source faults,and the central dolomitized beach zone is the main exploration area.(3)The Cambrian platform margin reef beach,large in scale,good in physical properties and close to source rocks,has the possibility to form monolithic gas field;the caprock and preservation conditions are the key factors for hydrocarbon enrichment;the northern part of the phasesⅠandⅡplatform margin reefs has better sealing conditions,and is the main direction of next exploration.(4)Limestone fault solution reservoirs in the upper part of Ordovician Yingshan Formation,controlled by faults and small in scale,but good in reservoir-cap combination,worth exploring.(5)The granular limestone beach of Ordovician Yijianfang Formation is well developed and gas-bearing,but short in exposure dissolution time,and the reservoirs are strongly heterogeneous,and are a potential exploration field.展开更多
The Shazi large-scale anatase deposit in Qinglong County, Guizhou Province, has been discovered recently and now is under exploration. Investigations show that the orebodies mostly occur at the top of the karst unconf...The Shazi large-scale anatase deposit in Qinglong County, Guizhou Province, has been discovered recently and now is under exploration. Investigations show that the orebodies mostly occur at the top of the karst unconformity of the Middle Permian Maokou Formation strata and at the bottom of the Emeishan basalt. And the following three prerequisites should be satisfied for the formation of the deposit: 1) there must be the material source of anatase; 2) there must be weekly alkaline media and low-tempeature and low-pressure conditions; 3) there was no high-temperature and high-pressure environment subsequently for the transformation of anatase into rutile. In the Emeishan basalt of western Guizhou, the element Ti mostly entered the silicon-oxygen tetrahedra of picrite in heterovalent isomorphism(Ti4++Al3+→Mg2++Si4+). When volcanic ejecta resultant from strong eruption of the Emeishan basalt magma fell into water, picrite was usually dissociated to chlorite. Thus, the element Ti4+ in the picrite could be released from the silicon-oxygen tetrahedraa of picrite into water, and conbined with oxygen in the water to form Ti O2. This paper has proved that this deposit, enriched in anatase, discovered recently at Shazi, Qinglong Country, Guizhou Province, is a residual-deluvial-type deposit. Its genesis can be explained as follows. Volcanic clastics formed at the early stage of strong eruption of the Emeishan basalt magma were chemically deposited to form anatase in the low-temperature, low-pressure and weekly alkaline waters in the karst depressions at the top of the Maokou Formation(limestone) strata. The anatase was then dissociated owing to weathering and leaching during the Quaternary and the anatase was further enriched to form the residual-deluvial-type anatase ore deposit.展开更多
The Taiwan Strait tunnel, as a great project, has been studied for a long time and met many challenges from the beginning of the feasibility study that has attracted attention among scientists and engineers on both si...The Taiwan Strait tunnel, as a great project, has been studied for a long time and met many challenges from the beginning of the feasibility study that has attracted attention among scientists and engineers on both sides of the Taiwan Strait and around the world as well. The key question is whether this undersea tunnel can be constructed with present technologies under such complex geologic and seismologic conditions. Results of current researches indicate that the sea floor of the Strait is covered with a horizontal layer composed of both the Pleistocene and the Holocene sandstone and shale with a thickness of about 200~300 m, without any large fault belt or fold.This can serve as a good bearing and impermeable layer for constructing such an undersea tunnel. The Penghu Islands and Penghu terrace, which are composed of hard basaltic rock over a wide area of 70 km (NS)×40 km (EW), might be connected each othar by a bridge instead of an undersea tunnel, and serve as a construction site. Although there are several geologic units separated by faults under the upper horizontal layer, these faults do not cut through the upper layer. Only the NE offshore fault along the Fujian coast and that along the west coast of Taiwan should be noticed, between which a suspension tunnel instead of an undersea tunnel can be constructed. Therefore it is judged that the tunnel beginning from Amoy, through the Jinmen Island and the Penghu Islands to the Peigang harbour is worth recommendation.展开更多
With the continuous development of gold ore prospecting and exploration in recent years a new type of micro-disseminated gold deposits have been found in the regions of Southwest Guizhou Province and Northwest Guangxi...With the continuous development of gold ore prospecting and exploration in recent years a new type of micro-disseminated gold deposits have been found in the regions of Southwest Guizhou Province and Northwest Guangxi Zhuang Autonomous Region,with the orebodies directly occurring in diabase or in the contact zone between diabase and strata.The orebodies are strictly controlled by fault structures.The discovery of this type of gold deposits has brought about new prospects for gold ore prospecting in the Yunnan-Guizhou-Guangxi Golden Triangle region.From the preliminary analysis of the geological characteristics of the Qiaoxiang gold deposit in Wangmo County,in combination with the results of research work in the adjacent areas in recent years,this paper roughly described the geological characteristics and metallogenic conditions of this type of gold ore deposits with an attempt to make more and more geologists pay enough attention to this type of gold ore deposits,so as to promote gold ore prospecting in Guizhou Province to develop toward a variety of types of gold deposits in all round way.展开更多
Coalbed methane enrichment will be controlled by many good macro geological dynamical conditions; there is evident difference of enrichment grade in different area and different geological conditions.This paper has st...Coalbed methane enrichment will be controlled by many good macro geological dynamical conditions; there is evident difference of enrichment grade in different area and different geological conditions.This paper has studied tectonic dynamical conditions, thermal dynamical conditions and hydraulic conditions, which affect coalbed methane enrichment in Qinshui basin.Coalbed methane enrichment units have been divided based on tectonic dynamical conditions of Qinshui basin,combined with thermal dynamical conditions and hydraulic conditions.展开更多
Based on an example of a project in Tangshan, the high-rise buildings are built in karst area and mined out affected area which is treated by high pressure grouting, and foundation is adopted the form of pile raft fou...Based on an example of a project in Tangshan, the high-rise buildings are built in karst area and mined out affected area which is treated by high pressure grouting, and foundation is adopted the form of pile raft foundation. By long-term measured settlement of high-rise buildings, It is found that foundation settlement is linear increase with the increase of load before the building is roof-sealed, and the settlement increases slowly after the building is roof-sealed, and the curve tends to converge, and the foundation consolidation is completed. The settlement of the foundation is about 80% - 84% of the total settlement before the building is roof-sealed.Three layer BP neural network model is used to predict the settlement in the karst area and mined affected area.Compared with the measured data, the relative difference of the prediction is 0.91% - 2.08% in the karst area, and is 0.95% - 2.11% in mined affected area. The prediction results of high precision can meet the engineering requirements.展开更多
"Golden triangle"area bordered on Yunnan-Guizhou-Guangxi was one of the most important Carlin-type gold deposits concentration areas.Deep understanding of Carlin-type gold deposits in Guizhou and Guangxi Pro..."Golden triangle"area bordered on Yunnan-Guizhou-Guangxi was one of the most important Carlin-type gold deposits concentration areas.Deep understanding of Carlin-type gold deposits in Guizhou and Guangxi Province had reached through several decades studies,but geological environment was very complex in the southeastern Yunnan,and Carlin-type gold deposits produced in the southeastern Yunnan were different from that of America,few studies were taken there.Based on a large number of field work,studies on the geological characteristics combining with geochemistry characteristics were taken,and analysis the genesis of Laozhaiwan gold deposit.The types of alteration in Laozhaiwan gold deposit were mainly silicification and pyritization,and Gold grade was high when silicification and pyritization were both occurred.It could be caculated that fluid density(g/cm3)varied from 0.7 to 4.9,salinity varied from 0.76%to 0.95%and ore-forming pressure(Pa)varied from 1.81×105 to 49.96×105 according to fluid inclusion test results,showed that Laozhaiwan gold deposit was hypabyssal hydrothermal deposit in low temperature and low salinity.According to composition of fluid inclusion analysis,combining with H-O isotope,made theδD-δ18O figure,showed that the fluid of the deposit rooted in formation water and mixed with meteoric waters later.展开更多
By combining the practices of deep mine mining in Changguang Mine field and using the Universal Distinct Element Code 3 0(UDEC3 0) numerical computing method, the distribution characteristics of deformation field and ...By combining the practices of deep mine mining in Changguang Mine field and using the Universal Distinct Element Code 3 0(UDEC3 0) numerical computing method, the distribution characteristics of deformation field and stress field as well as the surrounding rock deformation regularity of soft rock roadway are analyzed under extremely complicated geological conditions, a technical principle of bolting to control the surrounding rock of roadway is put forward. And also using a dynamic control for surrounding rocks designing method, the supporting parameters and implement plan are rationally determined. The experimental tests have obtained a good controlling result of surrounding rock.展开更多
基金supported by the project of the China Geological Survey for shale gas in Southern China(DD20221852)the National Natural Science Foundation of China(42242010,U2244208)。
文摘China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major controlling factors.This study compared the geological characteristics of various shales and analyzed the influences of different parameters on the formation and accumulation of shale gas.In general,shales in China’s several regions exhibit high total organic carbon(TOC)contents,which lays a sound material basis for shale gas generation.Marine strata generally show high degrees of thermal evolution.In contrast,continental shales manifest low degrees of thermal evolution,necessitating focusing on areas with relatively high degrees of thermal evolution in the process of shale gas surveys for these shales.The shales of the Wufeng and Silurian formations constitute the most favorable shale gas reservoirs since they exhibit the highest porosity among the three types of shales.These shales are followed by those in the Niutitang and Longtan formations.In contrast,the shales of the Doushantuo,Yanchang,and Qingshankou formations manifest low porosities.Furthermore,the shales of the Wufeng and Longmaxi formations exhibit high brittle mineral contents.Despite a low siliceous mineral content,the shales of the Doushantuo Formation feature a high carbonate mineral content,which can increase the shales’brittleness to some extent.For marine-continental transitional shales,where thin interbeds of tight sandstone with unequal thicknesses are generally found,it is recommended that fracturing combined with drainage of multiple sets of lithologic strata should be employed to enhance their shale gas production.
基金supported by the Project of China Geological Survey (Nos. DD20160152, DD20160147, GZH 200800503, DD20190818)the National Natural Science Foundation of China (Nos. 41506080, 41702162)+1 种基金the Project of China Ministry of Land and Resources (Nos. XQ2005-01, 2009GYXQ10)the Postdoctoral Innovation Fund Project of Shandong Province (No. 201602004)
文摘No substantial breakthroughs have been made in hydrocarbon exploration of the South Yellow Sea Basin.It is believed that the Mesozoic-Paleozoic marine sedimentary formation in the South Yellow Sea Basin is similar to that in the Sichuan Basin.Therefore,outcrop,drilling,and seismic data were determined and compared with the research results on petroleum geological conditions in the Yangtze land area,and the hydrocarbon geological conditions were analyzed comprehensively from multiple aspects,such as basin evolution and main source rocks,reservoir characteristics,preservation conditions,and structural traps.The results show that two main stages in the South Yellow Sea Basin(the stable evolution stage of the Mesozoic-Paleozoic marine basin and the Mesozoic-Cenozoic tectonic reformation and basin formation stage)were important for the development and evolution of four sets of main source rocks.Reservoirs dominated by carbonate rocks,three sets of capping beds with good sealing capability,relatively weak magmatic activity,and multiple types of structural traps jointly constituted relatively good hydrocarbon-reservoir-forming conditions.There were four sets of main source-reservoir-cap assemblages and three possible hydrocarbon reservoir types(primary residual-type hydrocarbon reservoir,shallow reformed-type hydrocarbon reservoir,and composite-type hydrocarbon reservoir)developed in the marine strata.It is concluded that the marine strata in the South Yellow Sea Basin have relatively good hydrocarbon potential.The Laoshan Uplift is characterized by stable structure,complete preserved source reservoir cap assemblage,and large structural traps,and thus it is the preferred prospect zone for marine Paleozoic hydrocarbon exploration in this area.
基金co-funded by National Science and Technology Major Special Project (Grant No.2011ZX05018-001 and 2011ZX05028-002)PetroChina Co. Ltd. Project (Grant No.2011D-5002-02, 2014E-050202)
文摘The presence of shale gas has been confirmed in almost every marine shale distribution area in North America.Formation conditions of shale gas in China are the most favorable for marine,organic-rich shale as well.But there has been little research focusing on shale gas in Qiangtang Basin,Qinghai-Tibet Plateau,where a lot of Mesozoic marine shale formations developed.Based on the survey results of petroleum geology and comprehensive test analysis data for Qinghai-Tibet Plateau,for the first time,this paper discusses characteristics of sedimentary development,thickness distribution,geochemistry,reservoir and burial depth of organic-rich shale,and geological conditions for shale gas formation in Qiangtang Basin.There are four sets of marine shale strata in Qiangtang Basin including Upper Triassic Xiaochaka Formation (T3x),Middle Jurassic Buqu Formation (J2b),Xiali Formation (J2x) and Upper Jurassic Suowa Formation (J3s),the sedimentary types of which are mainly bathyal-basin facies,open platform-platform margin slope facies,lagoon and tidal-fiat facies,as well as delta facies.By comparing it with the indicators of gas shale in the main U.S.basins,it was found that the four marine shale formations in Qiangtang Basin constitute a multi-layer distribution of organic-rich shale,featuring a high degree of thickness and low abundance of organic matter,high thermal evolution maturity,many kinds of brittle minerals,an equivalent content of quartz and clay minerals,a high content of feldspar and low porosity,which provide basic conditions for an accumulation of shale gas resources.Xiaochaka Formation shale is widely distributed,with big thickness and the best gas generating indicators.It is the main gas source layer.Xiali Formation shale is of intermediate thickness and coverage area,with relatively good gas generating indicators and moderate gas formation potential.Buqu Formation shale and Suowa Formation shale are of relatively large thickness,and covering a small area,with poor gas generating indicators,and limited gas formation potential.The shale gas geological resources and technically recoverable resources were estimated by using geologic analogy method,and the prospective areas and potentially favorable areas for Mesozoic marine shale gas in Qiangtang Basin are forecast and analyzed.It is relatively favorable in a tectonic setting and indication of oil and gas,shale maturity,sedimentary thickness and gypsum-salt beds,and in terms of mineral association for shale gas accumulation.But the challenge lies in overcoming the harsh natural conditions which contributes to great difficulties in ground engineering and exploration,and high exploration costs.
文摘Focusing on the Yangtze River economic zone,the previous geological researches are systematically summarized,resources and environment conditions and major geological problems which are needing to be concerned in land planning and construction are studied.The results show that the resource conditions of cultivated land,shale gas,geotherm,lithium and so on are superior in the Yangtze River economic zone,and the resources and environment conditions are conducive to develop the modern agriculture,clean energy industry and strategic emerging industries.3×1013 m^2 farmlands without heavy metal pollution are concentrated;there are three national level shale gas exploration and development bases with explored reserves of 5.441×1011 m^3;geothermal availability is 2.4×109 t of standard coal each year,equivalent to 19% of the amount of coal in 2014;Asia's largest energy lithium metal ore deposit is found.In some parts of Yangtze River economic zone,there are some major geological problems such as active faults,karst collapse,ground subsidence,landslide-collapse-debris flow,affecting the river-crossing channels,high-speed railway,urban agglomeration and green ecological corridor planning and construction.Those problems should be concerned,and the relevant suggestions and countermeasures are put forward.Meanwhile,the ideas to further support the development of the Yangtze River economic zone are put forward.
基金Supported by the PetroChina Special S&T Project(2016E-0502)National Natural Science Foundation of China(41772099,41872116).
文摘Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rocks,favorable reservoir facies belts,hydrocarbon migration direction and reservoir-forming law in the Ordos Basin have been studied from the viewpoints of North China Craton breakup and Qilian-Qinling oceanic basin opening and closing.Four main results are obtained:(1)Controlled by deep-water shelf-rift,there are three suites of source rocks in the Ordos Basin and its periphery:Mesoproterozoic,Lower Cambrian and Middle-Upper Ordovician.(2)Controlled by littoral environment,paleo-uplift and platform margin,four types of reservoirs are developed in the area:Mesoproterozoic-Lower Cambrian littoral shallow sea quartz sandstone,Middle-Upper Cambrian–Ordovician weathering crust and dolomitized reservoir,and Ordovician L-shape platform margin reef and beach bodies.(3)Reservoir-forming assemblages vary greatly in the study area,with"upper generation and lower storage"as the main pattern in the platform,followed by"self-generation and self-storage".There are both"upper generation and lower storage"and"self-generation and self-storage"in the platform margin zone.In addition,in the case of communication between deep-large faults and the Changchengian system paleo-rift trough,there may also exist a"lower generation and upper reservoir"combination between the platform and the margin.(4)There are four new exploration fields including Qingyang paleo-uplift pre-Carboniferous weathering crust,L-shape platform margin zone in southwestern margin of the basin,Ordovician subsalt assemblage in central and eastern parts of the basin,and Mesoproterozoic–Cambrian.Among them,pre-Carboniferous weathering crust and L-shape platform margin facies zone are more realistic replacement areas,and Ordovician subsalt assemblage and the Proterozoic-Cambrian have certain potential and are worth exploring.
文摘The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an important component of the giant tectonic belt in central China (the Kunlun-Qilian-Qinling Tectonic Belt or the Central Orogenic Belt). Many known ore-forming belts such as the Kunlun-Qilian Qinling ore-forming zone, Sanjiang (or Three river) ore-forming zone, Central Asian ore-forming zone, etc. pass through the West Kunlun area. Three ore-forming zones and seven ore-forming subzones were classified, and eighteen mineralization areas were marked. It is indicated that the West Kunlun area is one of the most favorable region for finding out large and superlarge ore deposits.
基金the support of the project(SP2017/22)which is the base of this articlepartially supported by the Slovak Research and Development Agency under contract No.APVV-0129-12the Scientific Grant Agency of the Ministry of Education,Science,Research and Sport of the Slovak Republic and the Slovak Academy of Sciences(VEGA)within the project No.1/0559/17 and APVV 1/0462/16。
文摘This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility of spatial identification of cave spaces using surface geophysical methods due to the specific engineering-geological conditions of a thick surface layer of anthropogenic fill containing highly heterogeneous anthropogenic material.Its maximum thickness is 3 m.Another specificific condition of the study area is its location in the built-up area,due to which the applicability of geophysical methods was limited.The article contains methodological recommendations to be used in analogous geological conditions with karst structures topped with anthropogenic fill,which complicates the identification of cave spaces.The recommended solution herein is the identification of the cave system using underground mapping of the karst and its projection onto the surface for which surface geophysical methods have been combined.
文摘Almost all the coal is produced from open cut mines in Indonesia. As a consequence of open cut mine application, a great deal of coal is left out in the highwalls of the mined-out pits. Highwall mining systems can be used to recover this coal. The use of highwall mining systems has increasingly come into play in the US and Australia. However, it is not common in Indonesia. Moreover, Indonesia coal measure is categorized as weak geological condition. Some problems are likely to arise during the application of the highwall mining system for example instability of openings and highwalls due to the roof and pillar failures. Therefore, study of highwall mining system application in Indonesia is needed in order to increase the recovery rate of coal mining in Indonesia. This paper described the characteristics of the highwa!l mining system and discussed the appropriate highwall mining system application in weak geological condition, Indonesia. From the results of a series of laboratory tests and numerical analyses, it can be concluded that the stability of pillars and mine openings in auger mining systems is much higher than that in CHM and an auger mining system is suitable for such as very weak/poor strata conditions. Moreover, the application of backfilling system is very effective for improvement of the stability of pillar and openings.
基金the National Natural Science Foundation of China(Nos.41906188,41806057,41776081)the National Marine Geology Project of China(Nos.DD20160147,DD20190365)+1 种基金the National Program on Global Change and Air-Sea Interaction(No.GASI-GEOGE-02)the Special Fund for the Taishan Scholar Program of Shandong Province(No.ts201511061)。
文摘The South Yellow Sea Basin(SYSB) has multiple sets of proven source rocks and good hydrocarbon prospects,but no industrial oil and gas has been explored at present.To solve this puzzle for petroleum geologists,we systematically investigated the marine hydrocarbon geological conditions based on cores and testing data from borehole CSDP-2,the first exploration well with continuous coring in SYSB.The qualities of source rocks are evaluated in detail according to organic matter abundance,type,and maturity.The reservoir characterization mainly includes porosity,permeability,and reservoir space.Displacement pressure test and stratum thickness are the main foundations for defining the caprocks.Then,the oil-source rock correlation in the Permian and stratum model are analyzed to determine the favorable source-reservoir-caprock assemblages.The results show that three sets of effective source rocks(the Lower Triassic,Upper Permian,and Lower Permian),two sets of tight sandstone re servoirs(the Upper Permian and Lower Silurian-Upper Devonian),and two sets of caprocks(the Lower Triassic and Carboniferous) combine to constitute the hydrocarbon reservoir-forming as se mblages of "lower-ge neration and upper-accumlation" and "self-generation and self-accumlation",thus laying a solid foundation for promising petroleum prospects.The three sets of marine source rocks are characterized by successive generation and expulsion stages,which guarantees multistage hydrocarbon accumulation.Another three sets of continental source rocks distributed across the Middle Jurassic,Upper Cretaceous,and Paleogene depression areas,especially in the Northern Depression,may supplement some hydrocarbons for the Central Uplift through faults and the Indosinian unconformity.The favorable Permian exploration strata have been identified in the Central Uplift of SYSB.First,the Lower Permian and Upper Permian source rocks with high organic matter abundance and high thermal maturity supply sufficient hydrocarbons.Secondly,the interbedding relationship between the source rocks and sandstones in the Upper Permian strata ensures that hydrocarbons have been migrated into the nearby Upper Permian sandstones,reflecting near-source hydrocarbon accumulation.Finally,the good sealing property of the Lower Triassic Qinglong Formation caprocks plays an indispensable role in hydrocarbon preservation of the Permian reservoirs.This conclusion is supported by direct oil shows,gas logging anomalous layers,and hydrocarbon-bearing fluid inclusions.
基金Supported bythe National Natural Science Foundation of China (50904024) the State Key Laboratory Research Fund of Coal Resources and Mine Safety of China University of Mining & Technology (10KF02) the Doctoral Fund of Henan Polytechnic University (B2009-66)
文摘Coal roadway support is the foundation and strong guarantee of safe coal production. With the FLAC3D numerical simulation, the roadway fulllength anchor support mechanism was studied, and the full-length anchor forcetransferring mechanism and stressfield distribution formed by roadway surrounding rocks were analyzed, which will provide a scientific basis for a support technology in large-section roadways under complicated geological conditions and lay a foundation for the popularization and application of a full-length anchor support system under special geological conditions.
基金supported by the Basic Research Project (Grant No. 15-3413) of the Korea Institute of Geoscience and Mineral Resources (KIGAM)funded by the Ministry of Science, ICT and Future Planning of Korea
文摘The goal of this study is to determine the geometrical and geotechnical characteristics of landslides under various geological conditions using detailed field surveys, laboratory soil tests and precipitation records. Three study areas are selected to consider different rocks, including gneiss in Jangheung, granite in Sangju and sedimentary rocks in Pohang, South Korea. Many landslides have occurred in these three areas during the rainy season.Precipitation records indicate that landslides occurring in the gneiss area of Jangheung and granite area of Sangju may be influenced by the hourly rainfall intensity rather than cumulative rainfall.However, landslides occurring in the sedimentary rock area of Pohang may be influenced by hourly rainfall intensity and cumulative rainfall. To investigate the factors that influence these types of landslides, a detailed landslide survey was performed and a series of laboratory soil tests were conducted.According to the detailed field survey, most landslides occurred on the flanks of mountain slopes, and the slope inclination where they occurred mostly ranged from 26 to 30 degrees, regardless of the geological conditions. The landslide in the gneiss area of Jangheung is larger than the landslides in the granite area of Sangju and sedimentary rock area of Pohang.Particularly, the landslide in the sedimentary rock area is shorter and shallower than the landslides in the gneiss and granite areas. Thus, the shape and size of the landslide are clearly related to the geological conditions. According to the integrated soil property and landslide occurrence analyses results, the average dry unit weight of the soils from the landslide sites is smaller than that of the soils obtained from the nonlandslide site. The average coefficient of permeability of soils obtained from the landslide sites is greater than that of soils obtained from the non-landslide sites with the same geology. These results indicate that the soils from the landslide sites are more poorly graded or looser than the soils from the non-landslide sites.
文摘A novel optimization methodology for the disc cutter designs of tunnel boring machines (TBM) was presented. To fully understand the characteristics and performance of TBM cutters, a comprehensive list of performance parameters were investigated, including maximum equivalent stress and strain, specific energy and wear life which were closely related to the cutting forces and profile geometry of the cutter rings. A systematic method was employed to evaluate an overall performance index by incorporating objectives at all possible geological conditions. The Multi-objective & Multi-geologic Conditions Optimization (MMCO) program was then developed, which combined the updating of finite element model, system evaluation, finite element solving, post-processing and optimization algorithm. Finally, the MMCO was used to optimize the TBM cutters used in a TBM tunnel project in China. The results show that the optimization significantly improves the working performances of the cutters under all geological conditions considered.
基金Supported by the China National Science and Technology Major Project(2016E-0204).
文摘Lower Paleozoic carbonate rocks are an important exploration area in craton area of the Tarim Basin,with the proven oil and gas reserves of more than 2.2×10^8 t,but no large-scale discovery has been made in the Gucheng area so far.The key issues restricting exploration are that the source rock,reservoir scale and law of oil and gas enrichment are unclear.By systematically examining the petroleum geological conditions of Lower Paleozoic carbonate rocks,the following findings are reached:(1)Source rocks of slope-basin facies developed in Cambrian-Lower Ordovician in the Gucheng area.(2)The dolomitized beach in the lower part of Ordovician Yingshan Formation has large-scale reservoirs,good reservoir-cap assemblage and developed gas source faults,and is an important field for increasing reserves and production in the near future;hydrocarbon enrichment is controlled by reservoir and gas source faults,and the central dolomitized beach zone is the main exploration area.(3)The Cambrian platform margin reef beach,large in scale,good in physical properties and close to source rocks,has the possibility to form monolithic gas field;the caprock and preservation conditions are the key factors for hydrocarbon enrichment;the northern part of the phasesⅠandⅡplatform margin reefs has better sealing conditions,and is the main direction of next exploration.(4)Limestone fault solution reservoirs in the upper part of Ordovician Yingshan Formation,controlled by faults and small in scale,but good in reservoir-cap combination,worth exploring.(5)The granular limestone beach of Ordovician Yijianfang Formation is well developed and gas-bearing,but short in exposure dissolution time,and the reservoirs are strongly heterogeneous,and are a potential exploration field.
文摘The Shazi large-scale anatase deposit in Qinglong County, Guizhou Province, has been discovered recently and now is under exploration. Investigations show that the orebodies mostly occur at the top of the karst unconformity of the Middle Permian Maokou Formation strata and at the bottom of the Emeishan basalt. And the following three prerequisites should be satisfied for the formation of the deposit: 1) there must be the material source of anatase; 2) there must be weekly alkaline media and low-tempeature and low-pressure conditions; 3) there was no high-temperature and high-pressure environment subsequently for the transformation of anatase into rutile. In the Emeishan basalt of western Guizhou, the element Ti mostly entered the silicon-oxygen tetrahedra of picrite in heterovalent isomorphism(Ti4++Al3+→Mg2++Si4+). When volcanic ejecta resultant from strong eruption of the Emeishan basalt magma fell into water, picrite was usually dissociated to chlorite. Thus, the element Ti4+ in the picrite could be released from the silicon-oxygen tetrahedraa of picrite into water, and conbined with oxygen in the water to form Ti O2. This paper has proved that this deposit, enriched in anatase, discovered recently at Shazi, Qinglong Country, Guizhou Province, is a residual-deluvial-type deposit. Its genesis can be explained as follows. Volcanic clastics formed at the early stage of strong eruption of the Emeishan basalt magma were chemically deposited to form anatase in the low-temperature, low-pressure and weekly alkaline waters in the karst depressions at the top of the Maokou Formation(limestone) strata. The anatase was then dissociated owing to weathering and leaching during the Quaternary and the anatase was further enriched to form the residual-deluvial-type anatase ore deposit.
文摘The Taiwan Strait tunnel, as a great project, has been studied for a long time and met many challenges from the beginning of the feasibility study that has attracted attention among scientists and engineers on both sides of the Taiwan Strait and around the world as well. The key question is whether this undersea tunnel can be constructed with present technologies under such complex geologic and seismologic conditions. Results of current researches indicate that the sea floor of the Strait is covered with a horizontal layer composed of both the Pleistocene and the Holocene sandstone and shale with a thickness of about 200~300 m, without any large fault belt or fold.This can serve as a good bearing and impermeable layer for constructing such an undersea tunnel. The Penghu Islands and Penghu terrace, which are composed of hard basaltic rock over a wide area of 70 km (NS)×40 km (EW), might be connected each othar by a bridge instead of an undersea tunnel, and serve as a construction site. Although there are several geologic units separated by faults under the upper horizontal layer, these faults do not cut through the upper layer. Only the NE offshore fault along the Fujian coast and that along the west coast of Taiwan should be noticed, between which a suspension tunnel instead of an undersea tunnel can be constructed. Therefore it is judged that the tunnel beginning from Amoy, through the Jinmen Island and the Penghu Islands to the Peigang harbour is worth recommendation.
文摘With the continuous development of gold ore prospecting and exploration in recent years a new type of micro-disseminated gold deposits have been found in the regions of Southwest Guizhou Province and Northwest Guangxi Zhuang Autonomous Region,with the orebodies directly occurring in diabase or in the contact zone between diabase and strata.The orebodies are strictly controlled by fault structures.The discovery of this type of gold deposits has brought about new prospects for gold ore prospecting in the Yunnan-Guizhou-Guangxi Golden Triangle region.From the preliminary analysis of the geological characteristics of the Qiaoxiang gold deposit in Wangmo County,in combination with the results of research work in the adjacent areas in recent years,this paper roughly described the geological characteristics and metallogenic conditions of this type of gold ore deposits with an attempt to make more and more geologists pay enough attention to this type of gold ore deposits,so as to promote gold ore prospecting in Guizhou Province to develop toward a variety of types of gold deposits in all round way.
文摘Coalbed methane enrichment will be controlled by many good macro geological dynamical conditions; there is evident difference of enrichment grade in different area and different geological conditions.This paper has studied tectonic dynamical conditions, thermal dynamical conditions and hydraulic conditions, which affect coalbed methane enrichment in Qinshui basin.Coalbed methane enrichment units have been divided based on tectonic dynamical conditions of Qinshui basin,combined with thermal dynamical conditions and hydraulic conditions.
文摘Based on an example of a project in Tangshan, the high-rise buildings are built in karst area and mined out affected area which is treated by high pressure grouting, and foundation is adopted the form of pile raft foundation. By long-term measured settlement of high-rise buildings, It is found that foundation settlement is linear increase with the increase of load before the building is roof-sealed, and the settlement increases slowly after the building is roof-sealed, and the curve tends to converge, and the foundation consolidation is completed. The settlement of the foundation is about 80% - 84% of the total settlement before the building is roof-sealed.Three layer BP neural network model is used to predict the settlement in the karst area and mined affected area.Compared with the measured data, the relative difference of the prediction is 0.91% - 2.08% in the karst area, and is 0.95% - 2.11% in mined affected area. The prediction results of high precision can meet the engineering requirements.
基金financially supported by the Program of National Natural Science Foundation of China(No.41372093No.40930423+2 种基金No.41171302)the work item of China Geological Survey(No.12120113036200)higher education quality engineering project of chalcography excellent textbook Construction(No.XJC1105)
文摘"Golden triangle"area bordered on Yunnan-Guizhou-Guangxi was one of the most important Carlin-type gold deposits concentration areas.Deep understanding of Carlin-type gold deposits in Guizhou and Guangxi Province had reached through several decades studies,but geological environment was very complex in the southeastern Yunnan,and Carlin-type gold deposits produced in the southeastern Yunnan were different from that of America,few studies were taken there.Based on a large number of field work,studies on the geological characteristics combining with geochemistry characteristics were taken,and analysis the genesis of Laozhaiwan gold deposit.The types of alteration in Laozhaiwan gold deposit were mainly silicification and pyritization,and Gold grade was high when silicification and pyritization were both occurred.It could be caculated that fluid density(g/cm3)varied from 0.7 to 4.9,salinity varied from 0.76%to 0.95%and ore-forming pressure(Pa)varied from 1.81×105 to 49.96×105 according to fluid inclusion test results,showed that Laozhaiwan gold deposit was hypabyssal hydrothermal deposit in low temperature and low salinity.According to composition of fluid inclusion analysis,combining with H-O isotope,made theδD-δ18O figure,showed that the fluid of the deposit rooted in formation water and mixed with meteoric waters later.
文摘By combining the practices of deep mine mining in Changguang Mine field and using the Universal Distinct Element Code 3 0(UDEC3 0) numerical computing method, the distribution characteristics of deformation field and stress field as well as the surrounding rock deformation regularity of soft rock roadway are analyzed under extremely complicated geological conditions, a technical principle of bolting to control the surrounding rock of roadway is put forward. And also using a dynamic control for surrounding rocks designing method, the supporting parameters and implement plan are rationally determined. The experimental tests have obtained a good controlling result of surrounding rock.