Dexing copper deposit is the biggest porphyry copper deposit in China. By researching isotopes of C,Si and Cu from the samples of Tongchang and Fujiawu ore-field, the authors found that δ13CPDB values of siderite wer...Dexing copper deposit is the biggest porphyry copper deposit in China. By researching isotopes of C,Si and Cu from the samples of Tongchang and Fujiawu ore-field, the authors found that δ13CPDB values of siderite were close to the δ13CPDB value of original magma; δ30Si values of the samples at the ore-forming stage were close to the δ30Si value range of magma, δ30Si values of partial samples were far away from it; Cu isotopic compositions of massive chalcopyrite formed at the early ore-forming stage are higher than that of veinal chalcopyrite formed at the later ore-forming stage. The results show that ore-forming materials were mainly derived from the porphyry body, and part of them were from wall rock materials.展开更多
The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (IC...The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.展开更多
Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Gui...Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.展开更多
REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with ...REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with the ~REE ranging from 1.6×10^-9 to 166.8×10^-9. Their LREE/HREE ratios range from 7.6 to 98, showing LREE enrichment relatively. The JEu values are below 1, indicating that they were deposited from an Eu-depleted and reducing fluid-system. Similar to the ore-hosting carbonate strata, calcite separates from carbonate veinlets filling in the fractures or faults crosscutting the carbonate strata also show clear Eu-depletion. This indicates that the carbonate veinlets and their parent fluid was possibly sourced from the strata and inherited the REE geochemical features of the strata. Therefore, REE-geochemical characteristics of both the sulfides and calcites, which were deposited from an ore-forming hydrothermal system, are similar to those of carbonate strata, and strongly suggest that the ore metals were mainly sourced from carbonate strata.展开更多
The source of ore\|forming materials has long been a controversial focus both in metallogenic theory and in ore\|searching practice. This study deals with the helium and argon isotopic characteristics of pyrites from ...The source of ore\|forming materials has long been a controversial focus both in metallogenic theory and in ore\|searching practice. This study deals with the helium and argon isotopic characteristics of pyrites from 11 gold deposits and some country rocks in the gold mineralization\|concentrated areas within the three mantle\|branch structures in the region of North Hebei Province. It is indicated that \{\}\+3He/\+4He ratios in the gold deposits are within the range of \{0.93×10\+\{-6\}\}-\{7.3×10\+\{-6\}\}, with an average of \{3.55\} ×10\+\{-6\}; R/Ra=\{0.66\}-\{4.93\}, averaging \{2.53\}; \{\{\}\+\{40\}Ar/\+\{39\}Ar\} ratios vary between 426 and 2073, with the average value of \{\}\+\{40\}Ar being \{8.32\}; and the average of \{\}\+4He/\{\}\+\{40\}Ar ratios is 2.17. \{\}\+3He/ \{\}\+4He ratios in gneiss and granite in the periphery of the mining district are within the range of \{0.001×10\+\{-6\}\}-\{0.55×10\+\{-6\}\}, reflecting significant differences in their sources. \{\}\+3He and \{\}\+4He fall near the mantle, as is shown in the He concentration diagram. Studies have shown that the ore\|forming materials in this region should come from the deep interior of the Earth. With the multi\|stage evolution of mantle plume, ore\|forming fluids in the deep interior were moving upwards to shallow levels (crust). Under such circumstances, there would be inevitably occur crust/mantle fluid mixing, so their noble gas isotopic characteristics are intermediate between the mantle and the crust.展开更多
Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming...Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during展开更多
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated do...The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ^(18)O_(fluid)values calculated from δ^(18)O_(quartz) and δ^(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ^(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.展开更多
Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based...Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based on REE geochemistry, fluorite in the orefleld can be classified as the LREE-rich, LREE-flat and LREE-depleted types. The three types of fluorite formed at different stages from the same hydrothermal fluid source, with the LREE-rich fluorite forming at the relatively early stage, the LREE-flat fluorite in the middle, and the LREE-depleted fluorite at the latest stage. Various lines of evidence demonstrate that the variation of the REE contents of fluorite shows no relation to the color. The mineralization of the Maouiuping REE deposit is associated spatially and temporally with carbonatite-syenite magmatism and the ore-forming fluids are mainly derived from carbonatite and syenite melts.展开更多
The Hongshi copper deposit is located in the middle of the Kalatage ore district in the northern segment of the Dananhu-Tousuquan island-arc belt in East Tianshan, Xinjiang, NW China. This study analyses the fluid inc...The Hongshi copper deposit is located in the middle of the Kalatage ore district in the northern segment of the Dananhu-Tousuquan island-arc belt in East Tianshan, Xinjiang, NW China. This study analyses the fluid inclusions and H, O, and S stable isotopic compositions of the deposit. The fluid-inclusion data indicate that aqueous fluid inclusions were trapped in chalcopyrite-bearing quartz veins in the gangue minerals. The homogenization temperatures range from 108°C to 299°C, and the salinities range from 0.5% to 11.8%, indicating medium to low temperatures and salinities. The trapping pressures range from 34.5 MPa to 56.8 MPa. The δ^(18)O_(H_2O) values and δD values of the fluid range from -6.94‰ to -5.33‰ and from -95.31‰ to -48.20‰, respectively. The H and O isotopic data indicate that the ore-forming fluid derived from a mix of magmatic water and meteoric water and that meteoric water played a significant role. The S isotopic composition of pyrite ranges from 1.9‰ to 5.2‰, with an average value of 3.1‰, and the S isotopic composition of chalcopyrite ranges from -0.9‰ to 4‰, with an average value of 1.36‰, implying that the S in the ore-forming materials was derived from the mantle. The introduction of meteoric water decreased the temperature, volatile content, and pressure, resulting in immiscibility. These factors may have been the major causes of the mineralization of the Hongshi copper deposit. Based on all the geologic and fluid characteristics, we conclude that the Hongshi copper deposit is an epithermal deposit.展开更多
1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan...1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan lead and zinc展开更多
The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrome...The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The REE of deposit ore of the Laowan gold deposit, wall-rock and Laowan granite also were studied to trace the source of metallogenic materials in Laowan gold deposit in detail. The range of ∑ REE in quartz and pyrite from gold deposit is 4.18 × 10^-6 - 30.91 × 10^-6, average of 13.39 × 10^-6, 6.68 × 10^-6 of the Laowan granite quartz, obviously lower to REE concentration of deposit, granite and wall-rock. The value of (La/ Yb)N and (La/Sm)N of ore minerals from the gold deposit is 13.23 and 4.17 respectively. The differences in REE parameters, such as δEu, δCe and diffusion degree in REE from light to heavy, among deposit ore minerals and granite mineral are weak. Especially, there are no differences between the chondrite-normalised REE curves of minerals from gold deposit and those of quartzs in Laowan granite, no similarity to wall-rock', which shows that ore-forming hydrothermal fluid mainly came from magma fluid resulting from the Laowan granite magma, metamorphic fluid in few. The results also show that REE characteristics of ore minerals in deposit are effective for disclosing oreforming fluid quality comparing with deposit ore'REE compositions.展开更多
Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have ...Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have investigated the geological characteristics,geochemistry and fluid inclusions of this deposit.展开更多
Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,cha...Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.展开更多
The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization ...The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization are present in the Dahongshan deposit:(1)early submarine volcanic exhalation and sedimentary mineralization characterized by strata-bound fine-grained magnetite and banded Fe-Cu sulfide(pyrite and chalcopyrite)hosted in the Na-rich metavolcanic rocks;(2)late hydrothermal(-vein)type mineralization characterized by Fe-Cu sulfide veins in the hosted strata or massive coarse-grained magnetite orebodies controlled by faults.While previous studies have focused primarily on the early submarine volcanic and sedimentary mineralization of the deposit,data related to late hydrothermal mineralization is lacking.In order to establish the metallogenic age and ore-forming material source of the late hydrothermal(-vein)type mineralization,this paper reports the Re-Os dating of molybdenite from the late hydrothermal vein Fe-Cu orebody and H,O,S,and Pb isotopic compositions of the hydrothermal quartz-sulfide veins.The primary aim of this study was to establish the metallogenic age and ore-forming material source of the hydrothermal type orebody.Results show that the molybdenite separated from quartz-sulfide veins has a Re-Os isochron age of 831±11 Ma,indicating that the Dahongshan Fe-Cu deposit experienced hydrothermal superimposed mineralization in Neoproterozoic.The molybdenite has a Re concentration of 99.7-382.4 ppm,indicating that the Re of the hydrothermal vein ores were primarily derived from the mantle.The δ^(34)S values of sulfides from the hydrothermal ores are 2‰-8‰ showing multi-peak tower distribution,suggesting that S in the ore-forming period was primarily derived from magma and partially from calcareous sedimentary rock.Furthermore,the abundance of radioactive Pb increased significantly from ore-bearing strata to layered and hydrothermal vein ores,which may be related to the later hydrothermal transformation.The composition of H and O isotopes within the hydrothermal quartz indicates that the ore-forming fluid is a mixture of magmatic water and a small quantity of water.These results further indicate that the late hydrothermal orebodies were formed by the Neoproterozoic magmatic hydrothermal event,which might be related to the breakup of the Rodinia supercontinent.Mantle derived magmatic hydrothermal fluid extracted ore-forming materials from the metavolcanic rocks of Dahongshan Group and formed the hydrothermal(-vein)type Fe-Cu orebodies by filling and metasomatism.展开更多
Through the finite-element modeling. a quantitative analysis of paleogeothermal evolution after the main volcanic eruption at Cretaceous period for the Xiangshan uranium ore-field. East China. has been presented. Rese...Through the finite-element modeling. a quantitative analysis of paleogeothermal evolution after the main volcanic eruption at Cretaceous period for the Xiangshan uranium ore-field. East China. has been presented. Researches reveal that the energy from the volcanic lava could affect the geothermal field for only three million years after their eruption. and could not provide heat for the Xiangshan uranium ore-foming hydrothermal system because the time gap between the volcanic activities and the uranium mineralizations is longer than 40 million years. The evidences show that the heat energy for the ore-forming system came from anomalously high paleogeothermal gradient in the study area during the mineralization period.展开更多
Eastern Hebei Province is one of the important gold mineralization areas in North China, and detailed investigations have been made in this area. Different mineralization models and different ore-forming sources have ...Eastern Hebei Province is one of the important gold mineralization areas in North China, and detailed investigations have been made in this area. Different mineralization models and different ore-forming sources have been proposed for the gold deposits in this area. As more detailed work was made and more information has been accumulated, it is necessary to make a new investigation on gold metallogenesis and its source. This paper presents the data about 13 gold deposits (occurrences). It is concluded that the element gold came from the deep mantle. Different models of metallogenesis substantially describe such processes that ore-forming fluids were involved in metallogenesis in different favorable loci. Gold ore prospecting should be focused on fluid channel ways and favorable structures.展开更多
The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively uniq...The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively unique. On the basis of geological features such as the contents of mineralization elements, the REE concentrations of gangue calcites, the REE concentrations of calcite veins in the NE-trending tectonic zone and the Pb, Sr, C, H and O isotopic compositions of different minerals, this paper presents that the ore-forming materials and ore-forming fluids of the deposit were derived from various types of strata or rocks. This is a very significant conclusion for us to further discuss the mineralization mechanism of the deposit at depth and establish an available genetic model.展开更多
The Zhangjiakou-Xuanhua area is a mineral resource-concentrated area for gold-silver polymetallic ore deposits. The temporal and spatial distribution and origin of mineral resources have been argued for a long time. B...The Zhangjiakou-Xuanhua area is a mineral resource-concentrated area for gold-silver polymetallic ore deposits. The temporal and spatial distribution and origin of mineral resources have been argued for a long time. Based on the comprehensive studies of geochronology and sulfur, lead, oxygen, carbon and noble gas isotopes, it is considered that the temporal and spatial distribution of mineral resources in this area is obviously controlled by the Zhangjiakou-Xuanhua mantle branch structure, as is reflected by the occurrence of gold deposits in the inner parts and of Ag-Pb-Zn polymetallic ore deposits in the outer parts. The mineralization took place mainly during the Yanshanian period. Ore-forming materials came largely from the deep interior of the Earth, and hydrothermal fluids were derived predominantly from Yanshanian magmatism.展开更多
This study was conducted following research on metallogenesis in the Zhangjiajie-Xuanhua and East Hebei mantle branch structure zones. The Fuping mantle branch structure zone is one where Au, Cu and Ag poly-metallic o...This study was conducted following research on metallogenesis in the Zhangjiajie-Xuanhua and East Hebei mantle branch structure zones. The Fuping mantle branch structure zone is one where Au, Cu and Ag poly-metallic ore resources are concentrated in North Hebei. However, there has existed a long-standing controversy on the temporal-spatial distribution of ore resources and their ore-forming material sources. In terms of age dating and the comprehensive analysis of S, Pb, O, C and Si isotopes, it is considered that the temporal-spatial distribution of ore resources in this mantle branch structure zone is obviously controlled by the Fuping mantle branch structure. In space there is developed such a metallogenic pattern as to be Ag, Pb and Zn polymetallic ore deposits with gold appearing inside and copper appearing outside. Metallogenesis is dated mainly at Yanshanian, the ore-forming materials were derived predominantly from the deep interior of the Earth, and ore-forming fluids were derived largely from Yanshanian magmatism.展开更多
文摘Dexing copper deposit is the biggest porphyry copper deposit in China. By researching isotopes of C,Si and Cu from the samples of Tongchang and Fujiawu ore-field, the authors found that δ13CPDB values of siderite were close to the δ13CPDB value of original magma; δ30Si values of the samples at the ore-forming stage were close to the δ30Si value range of magma, δ30Si values of partial samples were far away from it; Cu isotopic compositions of massive chalcopyrite formed at the early ore-forming stage are higher than that of veinal chalcopyrite formed at the later ore-forming stage. The results show that ore-forming materials were mainly derived from the porphyry body, and part of them were from wall rock materials.
文摘The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.
文摘Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.
基金This Project is supported by the National Natural Science Foundation (No. 40502011, 40372048 and 40425006).
文摘REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with the ~REE ranging from 1.6×10^-9 to 166.8×10^-9. Their LREE/HREE ratios range from 7.6 to 98, showing LREE enrichment relatively. The JEu values are below 1, indicating that they were deposited from an Eu-depleted and reducing fluid-system. Similar to the ore-hosting carbonate strata, calcite separates from carbonate veinlets filling in the fractures or faults crosscutting the carbonate strata also show clear Eu-depletion. This indicates that the carbonate veinlets and their parent fluid was possibly sourced from the strata and inherited the REE geochemical features of the strata. Therefore, REE-geochemical characteristics of both the sulfides and calcites, which were deposited from an ore-forming hydrothermal system, are similar to those of carbonate strata, and strongly suggest that the ore metals were mainly sourced from carbonate strata.
文摘The source of ore\|forming materials has long been a controversial focus both in metallogenic theory and in ore\|searching practice. This study deals with the helium and argon isotopic characteristics of pyrites from 11 gold deposits and some country rocks in the gold mineralization\|concentrated areas within the three mantle\|branch structures in the region of North Hebei Province. It is indicated that \{\}\+3He/\+4He ratios in the gold deposits are within the range of \{0.93×10\+\{-6\}\}-\{7.3×10\+\{-6\}\}, with an average of \{3.55\} ×10\+\{-6\}; R/Ra=\{0.66\}-\{4.93\}, averaging \{2.53\}; \{\{\}\+\{40\}Ar/\+\{39\}Ar\} ratios vary between 426 and 2073, with the average value of \{\}\+\{40\}Ar being \{8.32\}; and the average of \{\}\+4He/\{\}\+\{40\}Ar ratios is 2.17. \{\}\+3He/ \{\}\+4He ratios in gneiss and granite in the periphery of the mining district are within the range of \{0.001×10\+\{-6\}\}-\{0.55×10\+\{-6\}\}, reflecting significant differences in their sources. \{\}\+3He and \{\}\+4He fall near the mantle, as is shown in the He concentration diagram. Studies have shown that the ore\|forming materials in this region should come from the deep interior of the Earth. With the multi\|stage evolution of mantle plume, ore\|forming fluids in the deep interior were moving upwards to shallow levels (crust). Under such circumstances, there would be inevitably occur crust/mantle fluid mixing, so their noble gas isotopic characteristics are intermediate between the mantle and the crust.
文摘Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during
基金granted by the China State Mineral Resources Investigation Program(Grant No. 1212011121117)the National Natural Science Foudation of China(Grant No.41102050)the Central University Fund(310827153407)
文摘The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ^(18)O_(fluid)values calculated from δ^(18)O_(quartz) and δ^(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ^(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.
文摘Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based on REE geochemistry, fluorite in the orefleld can be classified as the LREE-rich, LREE-flat and LREE-depleted types. The three types of fluorite formed at different stages from the same hydrothermal fluid source, with the LREE-rich fluorite forming at the relatively early stage, the LREE-flat fluorite in the middle, and the LREE-depleted fluorite at the latest stage. Various lines of evidence demonstrate that the variation of the REE contents of fluorite shows no relation to the color. The mineralization of the Maouiuping REE deposit is associated spatially and temporally with carbonatite-syenite magmatism and the ore-forming fluids are mainly derived from carbonatite and syenite melts.
基金financially supported by the National Key R&D Program of China(2017YFC0601201-2)funds from the Chinese Ministry of Land and Resources for public welfare industry research(201411026-1)the Chinese Geological Survey Project(DD20160071)
文摘The Hongshi copper deposit is located in the middle of the Kalatage ore district in the northern segment of the Dananhu-Tousuquan island-arc belt in East Tianshan, Xinjiang, NW China. This study analyses the fluid inclusions and H, O, and S stable isotopic compositions of the deposit. The fluid-inclusion data indicate that aqueous fluid inclusions were trapped in chalcopyrite-bearing quartz veins in the gangue minerals. The homogenization temperatures range from 108°C to 299°C, and the salinities range from 0.5% to 11.8%, indicating medium to low temperatures and salinities. The trapping pressures range from 34.5 MPa to 56.8 MPa. The δ^(18)O_(H_2O) values and δD values of the fluid range from -6.94‰ to -5.33‰ and from -95.31‰ to -48.20‰, respectively. The H and O isotopic data indicate that the ore-forming fluid derived from a mix of magmatic water and meteoric water and that meteoric water played a significant role. The S isotopic composition of pyrite ranges from 1.9‰ to 5.2‰, with an average value of 3.1‰, and the S isotopic composition of chalcopyrite ranges from -0.9‰ to 4‰, with an average value of 1.36‰, implying that the S in the ore-forming materials was derived from the mantle. The introduction of meteoric water decreased the temperature, volatile content, and pressure, resulting in immiscibility. These factors may have been the major causes of the mineralization of the Hongshi copper deposit. Based on all the geologic and fluid characteristics, we conclude that the Hongshi copper deposit is an epithermal deposit.
文摘1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan lead and zinc
文摘The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The REE of deposit ore of the Laowan gold deposit, wall-rock and Laowan granite also were studied to trace the source of metallogenic materials in Laowan gold deposit in detail. The range of ∑ REE in quartz and pyrite from gold deposit is 4.18 × 10^-6 - 30.91 × 10^-6, average of 13.39 × 10^-6, 6.68 × 10^-6 of the Laowan granite quartz, obviously lower to REE concentration of deposit, granite and wall-rock. The value of (La/ Yb)N and (La/Sm)N of ore minerals from the gold deposit is 13.23 and 4.17 respectively. The differences in REE parameters, such as δEu, δCe and diffusion degree in REE from light to heavy, among deposit ore minerals and granite mineral are weak. Especially, there are no differences between the chondrite-normalised REE curves of minerals from gold deposit and those of quartzs in Laowan granite, no similarity to wall-rock', which shows that ore-forming hydrothermal fluid mainly came from magma fluid resulting from the Laowan granite magma, metamorphic fluid in few. The results also show that REE characteristics of ore minerals in deposit are effective for disclosing oreforming fluid quality comparing with deposit ore'REE compositions.
基金financially supported by the National Natural Science Foundation of China(grant No.41303026)
文摘Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have investigated the geological characteristics,geochemistry and fluid inclusions of this deposit.
基金financially supported by the National Key Research and Development Program of China(grant No.2016YFC0600310)the 973 Project(2015CB452600,2011CB4031006)+2 种基金the National Natural Science Foundation of China(grants No.41872083,41472076)the Program of the China Geological Survey(grants No.DD20160024–07,DD20179172)the China Fundamental Research Funds for the Central Universities(grant No.2652018133).
文摘Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.
基金supported by the NSFC Project(Grant Nos.42162012 and 42072094)the Open Research Project from the Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization,MNR(Grant No.ZRZYBSJSYS2022001)。
文摘The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization are present in the Dahongshan deposit:(1)early submarine volcanic exhalation and sedimentary mineralization characterized by strata-bound fine-grained magnetite and banded Fe-Cu sulfide(pyrite and chalcopyrite)hosted in the Na-rich metavolcanic rocks;(2)late hydrothermal(-vein)type mineralization characterized by Fe-Cu sulfide veins in the hosted strata or massive coarse-grained magnetite orebodies controlled by faults.While previous studies have focused primarily on the early submarine volcanic and sedimentary mineralization of the deposit,data related to late hydrothermal mineralization is lacking.In order to establish the metallogenic age and ore-forming material source of the late hydrothermal(-vein)type mineralization,this paper reports the Re-Os dating of molybdenite from the late hydrothermal vein Fe-Cu orebody and H,O,S,and Pb isotopic compositions of the hydrothermal quartz-sulfide veins.The primary aim of this study was to establish the metallogenic age and ore-forming material source of the hydrothermal type orebody.Results show that the molybdenite separated from quartz-sulfide veins has a Re-Os isochron age of 831±11 Ma,indicating that the Dahongshan Fe-Cu deposit experienced hydrothermal superimposed mineralization in Neoproterozoic.The molybdenite has a Re concentration of 99.7-382.4 ppm,indicating that the Re of the hydrothermal vein ores were primarily derived from the mantle.The δ^(34)S values of sulfides from the hydrothermal ores are 2‰-8‰ showing multi-peak tower distribution,suggesting that S in the ore-forming period was primarily derived from magma and partially from calcareous sedimentary rock.Furthermore,the abundance of radioactive Pb increased significantly from ore-bearing strata to layered and hydrothermal vein ores,which may be related to the later hydrothermal transformation.The composition of H and O isotopes within the hydrothermal quartz indicates that the ore-forming fluid is a mixture of magmatic water and a small quantity of water.These results further indicate that the late hydrothermal orebodies were formed by the Neoproterozoic magmatic hydrothermal event,which might be related to the breakup of the Rodinia supercontinent.Mantle derived magmatic hydrothermal fluid extracted ore-forming materials from the metavolcanic rocks of Dahongshan Group and formed the hydrothermal(-vein)type Fe-Cu orebodies by filling and metasomatism.
文摘Through the finite-element modeling. a quantitative analysis of paleogeothermal evolution after the main volcanic eruption at Cretaceous period for the Xiangshan uranium ore-field. East China. has been presented. Researches reveal that the energy from the volcanic lava could affect the geothermal field for only three million years after their eruption. and could not provide heat for the Xiangshan uranium ore-foming hydrothermal system because the time gap between the volcanic activities and the uranium mineralizations is longer than 40 million years. The evidences show that the heat energy for the ore-forming system came from anomalously high paleogeothermal gradient in the study area during the mineralization period.
文摘Eastern Hebei Province is one of the important gold mineralization areas in North China, and detailed investigations have been made in this area. Different mineralization models and different ore-forming sources have been proposed for the gold deposits in this area. As more detailed work was made and more information has been accumulated, it is necessary to make a new investigation on gold metallogenesis and its source. This paper presents the data about 13 gold deposits (occurrences). It is concluded that the element gold came from the deep mantle. Different models of metallogenesis substantially describe such processes that ore-forming fluids were involved in metallogenesis in different favorable loci. Gold ore prospecting should be focused on fluid channel ways and favorable structures.
文摘The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively unique. On the basis of geological features such as the contents of mineralization elements, the REE concentrations of gangue calcites, the REE concentrations of calcite veins in the NE-trending tectonic zone and the Pb, Sr, C, H and O isotopic compositions of different minerals, this paper presents that the ore-forming materials and ore-forming fluids of the deposit were derived from various types of strata or rocks. This is a very significant conclusion for us to further discuss the mineralization mechanism of the deposit at depth and establish an available genetic model.
基金the National Natural Science Foundation of China (No. 40272088).
文摘The Zhangjiakou-Xuanhua area is a mineral resource-concentrated area for gold-silver polymetallic ore deposits. The temporal and spatial distribution and origin of mineral resources have been argued for a long time. Based on the comprehensive studies of geochronology and sulfur, lead, oxygen, carbon and noble gas isotopes, it is considered that the temporal and spatial distribution of mineral resources in this area is obviously controlled by the Zhangjiakou-Xuanhua mantle branch structure, as is reflected by the occurrence of gold deposits in the inner parts and of Ag-Pb-Zn polymetallic ore deposits in the outer parts. The mineralization took place mainly during the Yanshanian period. Ore-forming materials came largely from the deep interior of the Earth, and hydrothermal fluids were derived predominantly from Yanshanian magmatism.
基金supported by the National Natural Science Foundation of China (Grant No. 40872137)Natural Science Foundation of Hebei Province (GrantNo.D2007000751)
文摘This study was conducted following research on metallogenesis in the Zhangjiajie-Xuanhua and East Hebei mantle branch structure zones. The Fuping mantle branch structure zone is one where Au, Cu and Ag poly-metallic ore resources are concentrated in North Hebei. However, there has existed a long-standing controversy on the temporal-spatial distribution of ore resources and their ore-forming material sources. In terms of age dating and the comprehensive analysis of S, Pb, O, C and Si isotopes, it is considered that the temporal-spatial distribution of ore resources in this mantle branch structure zone is obviously controlled by the Fuping mantle branch structure. In space there is developed such a metallogenic pattern as to be Ag, Pb and Zn polymetallic ore deposits with gold appearing inside and copper appearing outside. Metallogenesis is dated mainly at Yanshanian, the ore-forming materials were derived predominantly from the deep interior of the Earth, and ore-forming fluids were derived largely from Yanshanian magmatism.