期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Fractal Characteristics of Fault Structures and Their Use for Mapping Ore-prospecting Potential in the Qitianling Area, Southern Hunan Province, China 被引量:2
1
作者 WANG Nan LIU Yongshun +4 位作者 PENG Nian WU Cailai LIU Ningqiang NIE Baofeng YANG Xiaoyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第1期121-132,共12页
Quantitative analyses of the spatial distribution of fault structures can provide a theoretical basis for forecasting prospective ore deposits. Characteristics and complexity of fault structure distribution in the Qit... Quantitative analyses of the spatial distribution of fault structures can provide a theoretical basis for forecasting prospective ore deposits. Characteristics and complexity of fault structure distribution in the Qitianling area, Southern Hunan Province, China, were quantitatively calculated and appraised by fractal and multifractal methods to evaluate the relation between fault structures and ore-prospecting potential. The results show that the lengths of faults can be modeled as multifractals. Multifractal spectra evidently reflect the characteristics of the scaling of fault structures. The box- counting dimension value (D) of fault structures is equal to 1.656, as indicates complexity of the spatial distribution of faults and favorable structural conditions for the formation of ore deposits. Moreover, the D values of sub-regions were calculated and isopleths of their fractal dimension values were plotted accordingly. Overlay analyses of isopleths of fractal dimension values and distributions of known ore deposits show that areas with the larger fractal dimension values of fault structures have more ore deposits. This spatial coupling relationship between D values and ore deposits can be used to forecast and explore other ore deposits. On the basis of complexity theory for ore-forming systems, three exploration targets with high D values were delineated as prospective ore deposits. 展开更多
关键词 Fault structures Qitianling granite ore-prospecting potential FRACTAL MULTIFRACTAL
下载PDF
Copper-Polymetal Metallogenic Series and Prospecting Perspective of Eastern Section of Gangdise 被引量:1
2
作者 ZhengYouye XueYingxi GaoShunbao 《Journal of China University of Geosciences》 SCIE CSCD 2003年第4期349-355,共7页
Geological, geophysical, geochemical and remote sensing comprehensive studies show that big ore-prospecting potentiality is contained in the eastern section of the Gangdise Mountains, Tibet. There are various minerali... Geological, geophysical, geochemical and remote sensing comprehensive studies show that big ore-prospecting potentiality is contained in the eastern section of the Gangdise Mountains, Tibet. There are various mineralization types with dominant types of porphyry and exhalation. According to their relations with tectonic evolution, they are divided into four kinds of metallogenic series as follows: magmatic type (Cr, Pt, Cu, Ni) and exhalation type (Cu, Pb, Zn, Ag) ore deposit series related to Neo-Tethys oceanic crust subduction action (125-96 Ma); epithermal type (Au, Ag, Pb, Zn, Sb), altered fractured rock type (Cu, Mo) and skarn rock type (Cu) ore deposit series related to arc-continental collision; porphyry type (Cu, Mo), cryptoexplosion breccia type (Cu, Au, Pb, Zn), shear zone type (Au, Ag, Sb) and skarn rock type (Cu, Fe) ore deposit series with relation to post-orogenic extensional strike-slip. From subductive complex to the north, zoning appears to be crystallization differentiation type (segregation type)-shear zone type (altered rock type)-skarn rock type, epithermal type-porphyry type-porphyry type and exhalation type-exhalation type-hydrothermal filling-replacement type. The ore deposit is characterized by multi-places from the same source, parity and multi-stage, hypabyssal rock from the deep source and poly genetic compound as a whole. 展开更多
关键词 Gangdise super mineralization zone ore deposit series ore-prospecting perspective analysis.
下载PDF
Measurement of Joint Roughness Coefficient by Using Profilograph and Roughness Ruler 被引量:19
3
作者 杜时贵 胡云进 胡晓飞 《Journal of Earth Science》 SCIE CAS CSCD 2009年第5期890-896,共7页
Joint roughness coefficient(JRC) is the key parameter for the empirical estimation of joint shear strength by using the JRC-JCS(joint wall compressive strength) model.Because JRC has such characteristics as nonuni... Joint roughness coefficient(JRC) is the key parameter for the empirical estimation of joint shear strength by using the JRC-JCS(joint wall compressive strength) model.Because JRC has such characteristics as nonuniformity,anisotropy,and unhomogeneity,directional statistical measurement of JRC is the precondition for ensuring the reliability of the empirical estimation method.However,the directional statistical measurement of JRC is time-consuming.In order to present an ideal measurement method of JRC,new profilographs and roughness rulers were developed according to the properties of rock joint undulating shape based on the review of measurement methods of JRC.Operation methods of the profilographs and roughness rulers were also introduced.A case study shows that the instruments and operation methods produce an effective means for the statistical measurement of JRC. 展开更多
关键词 joint roughness coefficient profilograph roughness ruler empirical estimation direc-tional statistical measurement.
原文传递
Balanced Monitoring of Flow Phenomena in Moving Mesh Methods
4
作者 A.van Dam P.A.Zegeling 《Communications in Computational Physics》 SCIE 2010年第1期138-170,共33页
Adaptive moving mesh research usually focuses either on analytical deriva-tions for prescribed solutions or on pragmatic solvers with challenging physical appli-cations. In the latter case, the monitor functions that ... Adaptive moving mesh research usually focuses either on analytical deriva-tions for prescribed solutions or on pragmatic solvers with challenging physical appli-cations. In the latter case, the monitor functions that steer mesh adaptation are oftendefined in an ad-hoc way. In this paper we generalize our previously used moni-tor function to a balanced sum of any number of monitor components. This avoidsthe trial-and-error parameter fine-tuning that is often used in monitor functions. Thekey reason for the new balancing method is that the ratio between the maximum andaverage value of a monitor component should ideally be equal for all components.Vorticity as a monitor component is a good motivating example for this. Entropy alsoturns out to be a very informative monitor component. We incorporate the monitorfunction in an adaptive moving mesh higher-order finite volume solver with HLLCfluxes, which is suitable for nonlinear hyperbolic systems of conservation laws. Whenapplied to compressible gas flow it produces very sharp results for shocks and otherdiscontinuities. Moreover, it captures small instabilities (Richtmyer-Meshkov, Kelvin-Helmholtz). Thus showing the rich nature of the example problems and the effective-ness of the new monitor balancing. 展开更多
关键词 Moving mesh method conservative interpolation balanced monitor function direc-tional adaptation HYDRODYNAMICS implosion problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部