期刊文献+
共找到3,470篇文章
< 1 2 174 >
每页显示 20 50 100
Flood Velocity Prediction Using Deep Learning Approach 被引量:1
1
作者 LUO Shaohua DING Linfang +2 位作者 TEKLE Gebretsadik Mulubirhan BRULAND Oddbjørn FAN Hongchao 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期59-73,共15页
Floods are one of the most serious natural disasters that can cause huge societal and economic losses.Extensive research has been conducted on topics like flood monitoring,prediction,and loss estimation.In these resea... Floods are one of the most serious natural disasters that can cause huge societal and economic losses.Extensive research has been conducted on topics like flood monitoring,prediction,and loss estimation.In these research fields,flood velocity plays a crucial role and is an important factor that influences the reliability of the outcomes.Traditional methods rely on physical models for flood simulation and prediction and could generate accurate results but often take a long time.Deep learning technology has recently shown significant potential in the same field,especially in terms of efficiency,helping to overcome the time-consuming associated with traditional methods.This study explores the potential of deep learning models in predicting flood velocity.More specifically,we use a Multi-Layer Perceptron(MLP)model,a specific type of Artificial Neural Networks(ANNs),to predict the velocity in the test area of the Lundesokna River in Norway with diverse terrain conditions.Geographic data and flood velocity simulated based on the physical hydraulic model are used in the study for the pre-training,optimization,and testing of the MLP model.Our experiment indicates that the MLP model has the potential to predict flood velocity in diverse terrain conditions of the river with acceptable accuracy against simulated velocity results but with a significant decrease in training time and testing time.Meanwhile,we discuss the limitations for the improvement in future work. 展开更多
关键词 flood velocity prediction geographic data MLP deep learning
下载PDF
ASLP-DL—A Novel Approach Employing Lightweight Deep Learning Framework for Optimizing Accident Severity Level Prediction
2
作者 Saba Awan Zahid Mehmood 《Computers, Materials & Continua》 SCIE EI 2024年第2期2535-2555,共21页
Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the pre... Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the preferred method for modeling accident severity.Deep learning’s strength lies in handling intricate relation-ships within extensive datasets,making it popular for accident severity level(ASL)prediction and classification.Despite prior success,there is a need for an efficient system recognizing ASL in diverse road conditions.To address this,we present an innovative Accident Severity Level Prediction Deep Learning(ASLP-DL)framework,incorporating DNN,D-CNN,and D-RNN models fine-tuned through iterative hyperparameter selection with Stochastic Gradient Descent.The framework optimizes hidden layers and integrates data augmentation,Gaussian noise,and dropout regularization for improved generalization.Sensitivity and factor contribution analyses identify influential predictors.Evaluated on three diverse crash record databases—NCDB 2018–2019,UK 2015–2020,and US 2016–2021—the D-RNN model excels with an ACC score of 89.0281%,a Roc Area of 0.751,an F-estimate of 0.941,and a Kappa score of 0.0629 over the NCDB dataset.The proposed framework consistently outperforms traditional methods,existing machine learning,and deep learning techniques. 展开更多
关键词 Injury SEVERITY prediction deep learning feature
下载PDF
Deep Learning Shows Promise for Seasonal Prediction of Antarctic Sea Ice in a Rapid Decline Scenario
3
作者 Xiaoran DONG Yafei NIE +6 位作者 Jinfei WANG Hao LUO Yuchun GAO Yun WANG Jiping LIU Dake CHEN Qinghua YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1569-1573,共5页
The rapidly changing Antarctic sea ice has garnered significant interest. To enhance the prediction skill for sea ice and respond to the Sea Ice Prediction Network-South's latest call, this study presents the refo... The rapidly changing Antarctic sea ice has garnered significant interest. To enhance the prediction skill for sea ice and respond to the Sea Ice Prediction Network-South's latest call, this study presents the reforecast results of Antarctic sea-ice area and extent from December to June of the coming year with a Convolutional Long Short-Term Memory(Conv LSTM)Network. The reforecast experiments demonstrate that Conv LSTM captures the interannual and interseasonal variability of Antarctic sea ice successfully, and performs better than the European Centre for Medium-Range Weather Forecasts. Based on this, we present the prediction from December 2023 to June 2024, indicating that the Antarctic sea ice will remain at lows, but may not create a new record low. This research highlights the promising application of deep learning in Antarctic sea-ice prediction. 展开更多
关键词 deep learning ANTARCTIC sea ice seasonal prediction
下载PDF
ST-LSTM-SA:A New Ocean Sound Velocity Field Prediction Model Based on Deep Learning
4
作者 Hanxiao YUAN Yang LIU +3 位作者 Qiuhua TANG Jie LI Guanxu CHEN Wuxu CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1364-1378,共15页
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia... The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables. 展开更多
关键词 sound velocity field spatiotemporal prediction deep learning self-allention
下载PDF
A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation
5
作者 TANG Jun QIN Wanting +1 位作者 PAN Qingtao LAO Songyang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期666-678,共13页
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon... Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather. 展开更多
关键词 flight scheduling optimization deep multimodal fusion multitasking trajectory prediction typhoon weather flight cancellation prediction reliability
下载PDF
Assessments of Data-Driven Deep Learning Models on One-Month Predictions of Pan-Arctic Sea Ice Thickness
6
作者 Chentao SONG Jiang ZHU Xichen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1379-1390,共12页
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma... In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications. 展开更多
关键词 Arctic sea ice thickness deep learning spatiotemporal sequence prediction transfer learning
下载PDF
Quantitative prediction model for the depth limit of oil accumulation in the deep carbonate rocks:A case study of Lower Ordovician in Tazhong area of Tarim Basin
7
作者 Wen-Yang Wang Xiong-Qi Pang +3 位作者 Ya-Ping Wang Zhang-Xin Chen Fu-Jie Jiang Ying Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期115-124,共10页
With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can b... With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling. 展开更多
关键词 deep layer Tarim Basin Hydrocarbon accumulation Depth limit of oil accumulation prediction model
下载PDF
User Purchase Intention Prediction Based on Improved Deep Forest
8
作者 Yifan Zhang Qiancheng Yu Lisi Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期661-677,共17页
Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter selection.To address this issue,based... Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter selection.To address this issue,based on the deep forest algorithm and further integrating evolutionary ensemble learning methods,this paper proposes a novel Deep Adaptive Evolutionary Ensemble(DAEE)model.This model introduces model diversity into the cascade layer,allowing it to adaptively adjust its structure to accommodate complex and evolving purchasing behavior patterns.Moreover,this paper optimizes the methods of obtaining feature vectors,enhancement vectors,and prediction results within the deep forest algorithm to enhance the model’s predictive accuracy.Results demonstrate that the improved deep forest model not only possesses higher robustness but also shows an increase of 5.02%in AUC value compared to the baseline model.Furthermore,its training runtime speed is 6 times faster than that of deep models,and compared to other improved models,its accuracy has been enhanced by 0.9%. 展开更多
关键词 Purchase prediction deep forest differential evolution algorithm evolutionary ensemble learning model selection
下载PDF
Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis
9
作者 Xin Fan Shuqing Zhang +2 位作者 Kaisheng Wu Wei Zheng Yu Ge 《Computers, Materials & Continua》 SCIE EI 2024年第2期1687-1711,共25页
Cross-Project Defect Prediction(CPDP)is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project.However,existing CPDP methods only consi... Cross-Project Defect Prediction(CPDP)is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project.However,existing CPDP methods only consider linear correlations between features(indicators)of the source and target projects.These models are not capable of evaluating non-linear correlations between features when they exist,for example,when there are differences in data distributions between the source and target projects.As a result,the performance of such CPDP models is compromised.In this paper,this paper proposes a novel CPDP method based on Synthetic Minority Oversampling Technique(SMOTE)and Deep Canonical Correlation Analysis(DCCA),referred to as S-DCCA.Canonical Correlation Analysis(CCA)is employed to address the issue of non-linear correlations between features of the source and target projects.S-DCCA extends CCA by incorporating the MlpNet model for feature extraction from the dataset.The redundant features are then eliminated by maximizing the correlated feature subset using the CCA loss function.Finally,cross-project defect prediction is achieved through the application of the SMOTE data sampling technique.Area Under Curve(AUC)and F1 scores(F1)are used as evaluation metrics.This paper conducted experiments on 27 projects from four public datasets to validate the proposed method.The results demonstrate that,on average,our method outperforms all baseline approaches by at least 1.2%in AUC and 5.5%in F1 score.This indicates that the proposed method exhibits favorable performance characteristics. 展开更多
关键词 Cross-project defect prediction deep canonical correlation analysis feature similarity
下载PDF
Deep Learning for Financial Time Series Prediction:A State-of-the-Art Review of Standalone and HybridModels
10
作者 Weisi Chen Walayat Hussain +1 位作者 Francesco Cauteruccio Xu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期187-224,共38页
Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep lear... Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions. 展开更多
关键词 Financial time series prediction convolutional neural network long short-term memory deep learning attention mechanism FINANCE
下载PDF
A Deep Residual PLS for Data-Driven Quality Prediction Modeling in Industrial Process
11
作者 Xiaofeng Yuan Weiwei Xu +2 位作者 Yalin Wang Chunhua Yang Weihua Gui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1777-1785,共9页
Partial least squares(PLS)model is the most typical data-driven method for quality-related industrial tasks like soft sensor.However,only linear relations are captured between the input and output data in the PLS.It i... Partial least squares(PLS)model is the most typical data-driven method for quality-related industrial tasks like soft sensor.However,only linear relations are captured between the input and output data in the PLS.It is difficult to obtain the remaining nonlinear information in the residual subspaces,which may deteriorate the prediction performance in complex industrial processes.To fully utilize data information in PLS residual subspaces,a deep residual PLS(DRPLS)framework is proposed for quality prediction in this paper.Inspired by deep learning,DRPLS is designed by stacking a number of PLSs successively,in which the input residuals of the previous PLS are used as the layer connection.To enhance representation,nonlinear function is applied to the input residuals before using them for stacking highlevel PLS.For each PLS,the output parts are just the output residuals from its previous PLS.Finally,the output prediction is obtained by adding the results of each PLS.The effectiveness of the proposed DRPLS is validated on an industrial hydrocracking process. 展开更多
关键词 deep residual partial least squares(DRPLS) nonlinear function quality prediction soft sensor
下载PDF
The Short-Term Prediction ofWind Power Based on the Convolutional Graph Attention Deep Neural Network
12
作者 Fan Xiao Xiong Ping +4 位作者 Yeyang Li Yusen Xu Yiqun Kang Dan Liu Nianming Zhang 《Energy Engineering》 EI 2024年第2期359-376,共18页
The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key... The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key role in improving the safety and economic benefits of the power grid.This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data.Based on the graph attention network and attention mechanism,the method extracts spatial-temporal characteristics from the data of multiple wind farms.Then,combined with a deep neural network,a convolutional graph attention deep neural network model is constructed.Finally,the model is trained with the quantile regression loss function to achieve the wind power deterministic and probabilistic prediction based on multi-wind farm spatial-temporal data.A wind power dataset in the U.S.is taken as an example to demonstrate the efficacy of the proposed model.Compared with the selected baseline methods,the proposed model achieves the best prediction performance.The point prediction errors(i.e.,root mean square error(RMSE)and normalized mean absolute percentage error(NMAPE))are 0.304 MW and 1.177%,respectively.And the comprehensive performance of probabilistic prediction(i.e.,con-tinuously ranked probability score(CRPS))is 0.580.Thus,the significance of multi-wind farm data and spatial-temporal feature extraction module is self-evident. 展开更多
关键词 Format wind power prediction deep neural network graph attention network attention mechanism quantile regression
下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
13
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
Integrated Machine Learning and Deep Learning Models for Cardiovascular Disease Risk Prediction: A Comprehensive Comparative Study
14
作者 Shadman Mahmood Khan Pathan Sakan Binte Imran 《Journal of Intelligent Learning Systems and Applications》 2024年第1期12-22,共11页
Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of tra... Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of traditional Machine Learning (ML) and Deep Learning (DL) models in predicting CVD risk, utilizing a meticulously curated dataset derived from health records. Rigorous preprocessing, including normalization and outlier removal, enhances model robustness. Diverse ML models (Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Gradient Boosting) are compared with a Long Short-Term Memory (LSTM) neural network for DL. Evaluation metrics include accuracy, ROC AUC, computation time, and memory usage. Results identify the Gradient Boosting Classifier and LSTM as top performers, demonstrating high accuracy and ROC AUC scores. Comparative analyses highlight model strengths and limitations, contributing valuable insights for optimizing predictive strategies. This study advances predictive analytics for cardiovascular health, with implications for personalized medicine. The findings underscore the versatility of intelligent systems in addressing health challenges, emphasizing the broader applications of ML and DL in disease identification beyond cardiovascular health. 展开更多
关键词 Cardiovascular Disease Machine Learning deep Learning predictive Modeling Risk Assessment Comparative Analysis Gradient Boosting LSTM
下载PDF
Two-Way Neural Network Performance PredictionModel Based onKnowledge Evolution and Individual Similarity
15
作者 Xinzheng Wang Bing Guo Yan Shen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1183-1206,共24页
Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academi... Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academicrelateddata in the face-to-face physical teaching environment is usually sparsity,and the sample size is relativelysmall.It makes building models to predict students’performance accurately in such an environment even morechallenging.This paper proposes a Two-WayNeuralNetwork(TWNN)model based on the bidirectional recurrentneural network and graph neural network to predict students’next semester’s course performance using only theirprevious course achievements.Extensive experiments on a real dataset show that our model performs better thanthe baselines in many indicators. 展开更多
关键词 COMPUTER EDUCATION performance prediction deep learning
下载PDF
Sepsis Prediction Using CNNBDLSTM and Temporal Derivatives Feature Extraction in the IoT Medical Environment
16
作者 Sapiah Sakri Shakila Basheer +4 位作者 Zuhaira Muhammad Zain Nurul Halimatul Asmak Ismail Dua’Abdellatef Nassar Manal Abdullah Alohali Mais Ayman Alharaki 《Computers, Materials & Continua》 SCIE EI 2024年第4期1157-1185,共29页
Background:Sepsis,a potentially fatal inflammatory disease triggered by infection,carries significant healthimplications worldwide.Timely detection is crucial as sepsis can rapidly escalate if left undetected.Recentad... Background:Sepsis,a potentially fatal inflammatory disease triggered by infection,carries significant healthimplications worldwide.Timely detection is crucial as sepsis can rapidly escalate if left undetected.Recentadvancements in deep learning(DL)offer powerful tools to address this challenge.Aim:Thus,this study proposeda hybrid CNNBDLSTM,a combination of a convolutional neural network(CNN)with a bi-directional long shorttermmemory(BDLSTM)model to predict sepsis onset.Implementing the proposed model provides a robustframework that capitalizes on the complementary strengths of both architectures,resulting in more accurate andtimelier predictions.Method:The sepsis prediction method proposed here utilizes temporal feature extraction todelineate six distinct time frames before the onset of sepsis.These time frames adhere to the sepsis-3 standardrequirement,which incorporates 12-h observation windows preceding sepsis onset.All models were trained usingthe Medical Information Mart for Intensive Care III(MIMIC-III)dataset,which sourced 61,522 patients with 40clinical variables obtained from the IoT medical environment.The confusion matrix,the area under the receiveroperating characteristic curve(AUCROC)curve,the accuracy,the precision,the F1-score,and the recall weredeployed to evaluate themodels.Result:The CNNBDLSTMmodel demonstrated superior performance comparedto the benchmark and other models,achieving an AUCROC of 99.74%and an accuracy of 99.15%one hour beforesepsis onset.These results indicate that the CNNBDLSTM model is highly effective in predicting sepsis onset,particularly within a close proximity of one hour.Implication:The results could assist practitioners in increasingthe potential survival of the patient one hour before sepsis onset. 展开更多
关键词 Temporal derivatives hybrid deep learning predicting sepsis onset MIMIC III machine learning(ML) deep learning
下载PDF
Multi-Perspective Data Fusion Framework Based on Hierarchical BERT: Provide Visual Predictions of Business Processes
17
作者 Yongwang Yuan Xiangwei Liu Ke Lu 《Computers, Materials & Continua》 SCIE EI 2024年第1期1227-1252,共26页
Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited ... Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited in PBPM research,but no method has been effective in fusing data information into the control flow for multi-perspective process prediction.Therefore,this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion.Firstly,the first layer BERT network learns the correlations between different category attribute data.Then,the attribute data is integrated into a weighted event-level feature vector and input into the second layer BERT network to learn the impact and priority relationship of each event on future predicted events.Next,the multi-head attention mechanism within the framework is visualized for analysis,helping to understand the decision-making logic of the framework and providing visual predictions.Finally,experimental results show that the predictive accuracy of the framework surpasses the current state-of-the-art research methods and significantly enhances the predictive performance of BPM. 展开更多
关键词 Business process prediction monitoring deep learning attention mechanism BERT multi-perspective
下载PDF
Understanding the Low Predictability of the 2015/16 El Niño Event Based on a Deep Learning Model
18
作者 Tingyu WANG Ping HUANG Xianke YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1313-1325,共13页
The 2015/16 El Niño event ranks among the top three of the last 100 years in terms of intensity,but most dynamical models had a relatively low prediction skill for this event before the summer months.Therefore,th... The 2015/16 El Niño event ranks among the top three of the last 100 years in terms of intensity,but most dynamical models had a relatively low prediction skill for this event before the summer months.Therefore,the attribution of this particular event can help us to understand the cause of super El Niño–Southern Oscillation events and how to forecast them skillfully.The present study applies attribute methods based on a deep learning model to study the key factors related to the formation of this event.A deep learning model is trained using historical simulations from 21 CMIP6 models to predict the Niño-3.4 index.The integrated gradient method is then used to identify the key signals in the North Pacific that determine the evolution of the Niño-3.4 index.These crucial signals are then masked in the initial conditions to verify their roles in the prediction.In addition to confirming the key signals inducing the super El Niño event revealed in previous attribution studies,we identify the combined contribution of the tropical North Atlantic and the South Pacific oceans to the evolution and intensity of this event,emphasizing the crucial role of the interactions among them and the North Pacific.This approach is also applied to other El Niño events,revealing several new precursor signals.This study suggests that the deep learning method is useful in attributing the key factors inducing extreme tropical climate events. 展开更多
关键词 ENSO attribution deep learning ENSO prediction extreme El Niño
下载PDF
Remaining Useful Life Prediction With Partial Sensor Malfunctions Using Deep Adversarial Networks 被引量:4
19
作者 Xiang Li Yixiao Xu +2 位作者 Naipeng Li Bin Yang Yaguo Lei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期121-134,共14页
In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However... In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications. 展开更多
关键词 Adversarial training data fusion deep learning remaining useful life(RUL)prediction sensor malfunction
下载PDF
Artificial Potential Field Incorporated Deep-Q-Network Algorithm for Mobile Robot Path Prediction 被引量:3
20
作者 A.Sivaranjani B.Vinod 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期1135-1150,共16页
Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a st... Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a state action function in mobile robots suited to their environment.During trial-and-error interaction with its surroundings,it helps a robot tofind an ideal behavior on its own.The Deep Q Network(DQN)algorithm is used in TurtleBot 3(TB3)to achieve the goal by successfully avoiding the obstacles.But it requires a large number of training iterations.This research mainly focuses on a mobility robot’s best path prediction utilizing DQN and the Artificial Potential Field(APF)algorithms.First,a TB3 Waffle Pi DQN is built and trained to reach the goal.Then the APF shortest path algorithm is incorporated into the DQN algorithm.The proposed planning approach is compared with the standard DQN method in a virtual environment based on the Robot Operation System(ROS).The results from the simulation show that the combination is effective for DQN and APF gives a better optimal path and takes less time when compared to the conventional DQN algo-rithm.The performance improvement rate of the proposed DQN+APF in comparison with DQN in terms of the number of successful targets is attained by 88%.The performance of the proposed DQN+APF in comparison with DQN in terms of average time is achieved by 0.331 s.The performance of the proposed DQN+APF in comparison with DQN average rewards in which the positive goal is attained by 85%and the negative goal is attained by-90%. 展开更多
关键词 Artificial potentialfield deep reinforcement learning mobile robot turtle bot deep Q network path prediction
下载PDF
上一页 1 2 174 下一页 到第
使用帮助 返回顶部