Organelles form essential compartments of all eukaryotic cells. Mechanisms that ensure the unbiased inheritance of organelles during cell division are therefore necessary to maintain the viability of future cell gener...Organelles form essential compartments of all eukaryotic cells. Mechanisms that ensure the unbiased inheritance of organelles during cell division are therefore necessary to maintain the viability of future cell generations. Although inheritance of organelles represents a fundamental component of the cell cycle, surprisingly little is known about the underlying mechanisms that facilitate unbiased organelle inheritance. Evidence from a select number of studies, however, indicates that ordered organelle inheritance strategies exist in dividing cells of higher plants. The basic requirement for unbiased organelle inheritance is the duplication of organelle volume and distribution of the resulting organelle populations in a manner that facilitates unbiased partitioning of the organelle population to each daughter cell. Often, partitioning strategies are specific to the organelle, being influenced by the functional requirements of the organelle and whether the cells are mitotically active or re-entering into the cell cycle. Organelle partitioning mechanisms frequently depend on interactions with either the actin or microtubule cytoskeleton. In this focused review, we attempt to summarize key findings regarding organelle partitioning strategies in dividing cells of higher plants. We particularly concentrate on the role of the cytoskeleton in mediating unbiased organelle partitioning.展开更多
基金Supported by an Australian Research Council Centre of Excellence Grant to The University of Newcastle Node of the Centre of Excellence for Integrative Legume Research (to R.J.R.)
文摘Organelles form essential compartments of all eukaryotic cells. Mechanisms that ensure the unbiased inheritance of organelles during cell division are therefore necessary to maintain the viability of future cell generations. Although inheritance of organelles represents a fundamental component of the cell cycle, surprisingly little is known about the underlying mechanisms that facilitate unbiased organelle inheritance. Evidence from a select number of studies, however, indicates that ordered organelle inheritance strategies exist in dividing cells of higher plants. The basic requirement for unbiased organelle inheritance is the duplication of organelle volume and distribution of the resulting organelle populations in a manner that facilitates unbiased partitioning of the organelle population to each daughter cell. Often, partitioning strategies are specific to the organelle, being influenced by the functional requirements of the organelle and whether the cells are mitotically active or re-entering into the cell cycle. Organelle partitioning mechanisms frequently depend on interactions with either the actin or microtubule cytoskeleton. In this focused review, we attempt to summarize key findings regarding organelle partitioning strategies in dividing cells of higher plants. We particularly concentrate on the role of the cytoskeleton in mediating unbiased organelle partitioning.