期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
1
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil organic c Green Manure Deer Browse Forage cropping Systems
下载PDF
Crop yields and soil organic carbon dynamics in a long-term fertilization experiment in an extremely arid region of northern Xinjiang, China 被引量:1
2
作者 LYU Jinling LIU Hua +3 位作者 WANG Xihe Rodrigo OLAVE TIAN Changyan LIU Xuejun 《Journal of Arid Land》 SCIE CSCD 2017年第3期345-354,共10页
A long-term fertilization experiment was set up in northern Xinjiang, China to evaluate the dynamics of crop production and soil organic carbon (SOC) from 1990 to 2012 with seven fertilization treatments. The seven ... A long-term fertilization experiment was set up in northern Xinjiang, China to evaluate the dynamics of crop production and soil organic carbon (SOC) from 1990 to 2012 with seven fertilization treatments. The seven treatments included an unfertilized control (CK) and six different combinations of phosphorus (P), potassium (K), nitrogen (N), straw (S) and animal manure (M). The balanced fertilization treatments had significantly (P〈0.05) higher average yields than the unbalanced ones. The treatment with 2/3 N from potassium sulfate (NPK) and 1/3 N from farmyard manure (NPKM) had a higher average yield than the other treatments. The average yields (over the 23 years) in the treatments of NPK, and urea, calcium superphosphate (NP) did not differ significantly (P〉0.05) but were higher than that in the treatment with urea and potassium sulfate (NK; P〈0.05). The results also show that the highest increases in SOC (P〈0.05) occurred in NPKM with a potential increase of 1.2 t C/(hm2.a). The increase in SOC was only 0.31, 0.30 and 0.12 t C/(hm2.a) for NPKS (9/10 N from NPK and 1/10 N from straw), NPK and NP, respectively; and the SOC in the NP, NK and CK treatments were approaching equilibrium and so did not rise or fall significantly over the 23-year experiment. A complete NPK plus manure fertilization program is recommended for this extremely arid region to maximize both yields and carbon sequestration. 展开更多
关键词 long-term fertilization experiment extremely arid conditions soil organic carbon organic c inputs XINJIANG
下载PDF
Effect of N and P addition on soil organic C potential mineralization in forest soils in South China 被引量:17
3
作者 OUYANG, Xuejun ZHOU, Guoyi +4 位作者 HUANG, Zhongliang ZHOU, Cunyu LI, Jiong SHI, Junhui ZHANG, Deqiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第9期1082-1089,共8页
Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N d... Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana... 展开更多
关键词 ADDITION inorganic N available P MINERALIZATION soil organic c South china
下载PDF
Changes in Organic Carbon and Nutrient Contents of Highly Productive Paddy Soils in Yujiang County of Jiangxi Province,China and Their Environmental Application 被引量:7
4
作者 LI Zhong-pei ZHANG Tao-lin CHEN Bi-yun 《Agricultural Sciences in China》 CAS CSCD 2006年第7期522-529,共8页
Paddy field is an important land use in subtropical China. Development of high soil fertility and productivity is the management goal of paddy field, Fertilization and management practices have not only influenced the... Paddy field is an important land use in subtropical China. Development of high soil fertility and productivity is the management goal of paddy field, Fertilization and management practices have not only influenced the status of organic matter and nutrients in the soil but also affected the environmental quality. This article investigates the contents of organic carbon and the nutrients, and the change over the last 20 years in highly productive paddy soils and their environmental application. Field soils were sampled and the analytical results were compared with the corresponding values in the Second Soil Survey in Yujiang County of Jiangxi Province, China. The results showed that surface soils at a depth of 0-10 cm in highly productive paddy fields in Yujiang County of Jiangxi Province had contents of organic carbon (20.2 ±3.88) g kg^-1, total nitrogen (2.09±0.55) g kg^-1, and available phosphorus (42.7 ±32.7) mg kg^-1, respectively, which were all at very rich levels. Over the last 20 years, the organic carbon pool of the highly productive paddy soils reached a steady state. Total N and available P significantly increased, whereas available K changed a little. The amount and percentage of P immobilization in the surface soil (0-10 cm) of highly productive paddy fields were (142.7 ~ 41.1) mg kg-~ and (36.2~ 10.4)% of added P, and CEC (7.93 ~ 1.32) cmol kg-~. These two parameters were not higher than the mean values of paddy soils and upland red soils in the areas. Results also showed that fertilizer P in highly productive paddy soils had a high mobility and was prone to move toward a water body, which is the main source of nutrients causing eutrophication. Because of a weak K-fixing capacity, the available K content was not high in highly productive paddy soils. This suggests that attention should be paid to the K balance and the increase of soil K pool. 展开更多
关键词 Yujiang county highly productive paddy soils organic c nutrients environmental application
下载PDF
Changes in organic C stability within soil aggregates under different fertilization patterns in a greenhouse vegetable field 被引量:1
5
作者 LUAN Hao-an YUAN Shuo +4 位作者 GAO Wei TANG Ji-wei LI Ruo-nan ZHANG Huai-zhi HUANG Shao-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第10期2758-2771,共14页
Knowledge of the stability of soil organic C(SOC)is vital for assessing SOC dynamics and cycling in agroecosystems.Studies have documented the regulatory effect of fertilization on SOC stability in bulk soils.However,... Knowledge of the stability of soil organic C(SOC)is vital for assessing SOC dynamics and cycling in agroecosystems.Studies have documented the regulatory effect of fertilization on SOC stability in bulk soils.However,how fertilization alters organic C stability at the aggregate scale in agroecosystems remains largely unclear.This study aimed to appraise the changes of organic C stability within soil aggregates after eight years of fertilization(chemical vs.organic fertilization)in a greenhouse vegetable field in Tianjin,China.Changes in the stability of organic C in soil aggregates were evaluated by four methods,i.e.,the modified Walkley-Black method(chemical method),13C NMR spectroscopy(spectroscopic method),extracellular enzyme assay(biological method),and thermogravimetric analysis(thermogravimetric method).The aggregates were isolated and separated by a wet-sieving method into four fractions:large macroaggregates(>2 mm),small macroaggregates(0.25–2 mm),microaggregates(0.053–0.25 mm),and silt/clay fractions(<0.053 mm).The results showed that organic amendments increased the organic C content and reduced the chemical,spectroscopic,thermogravimetric,and biological stability of organic C within soil aggregates relative to chemical fertilization alone.Within soil aggregates,the content of organic C was the highest in microaggregates and decreased in the order microaggregates>macroaggregates>silt/clay fractions.Meanwhile,organic C spectroscopic,thermogravimetric,and biological stability were the highest in silt/clay fractions,followed by macroaggregates and microaggregates.Moreover,the modified Walkley-Black method was not suitable for interpreting organic C stability at the aggregate scale due to the weak correlation between organic C chemical properties and other stability characteristics within the soil aggregates.These findings provide scientific insights at the aggregate scale into the changes of organic C properties under fertilization in greenhouse vegetable fields in China. 展开更多
关键词 FERTILIZATION organic c stability soil aggregates thermogravimetric analysis 13c NMR spectroscopy
下载PDF
Alterations of soil aggregates and intra-aggregate organic carbon fractions after soil conversion from paddy soils to upland soils:Distribution,mineralization and driving mechanism
6
作者 Longfei KANG Jiamei WU +2 位作者 Chunfeng ZHANG Baoguo ZHU Guixin CHU 《Pedosphere》 SCIE CAS CSCD 2024年第1期121-135,共15页
Investigating the impacts of soil conversion on soil organic carbon(OC) content and its fractions within soil aggregates is essential for defining better strategies to improve soil structure and OC sequestration in te... Investigating the impacts of soil conversion on soil organic carbon(OC) content and its fractions within soil aggregates is essential for defining better strategies to improve soil structure and OC sequestration in terrestrial ecosystems. However, the consequences of soil conversion from paddy soil to upland soil for soil aggregates and intra-aggregate OC pools are poorly understood. Therefore, the objective of this study was to quantify the effects of soil conversion on soil aggregate and intra-aggregate OC pool distributions. Four typical rice-producing areas were chosen in North and South China, paired soil samples(upland soil converted from paddy soil more than ten years ago vs. adjacent paddy soil) were collected(0–20 cm) with three replicates in each area. A set of core parameters(OC preservation capacity, aggregate carbon(C) turnover, and biological activity index) were evaluated to assess the responses of intra-aggregate OC turnover to soil conversion. Results showed that soil conversion from paddy soil to upland soil significantly improved the formation of macro-aggregates and increased aggregate stability. It also notably decreased soil intra-aggregate OC pools, including easily oxidized OCa(EOCa), particulate OCa(POCa), and mineral-bound(MOCa) OC, and the sensitivity of aggregate-associated OC pools to soil conversion followed the order: EOCa(average reduction of 21.1%) > MOCa(average reduction of 15.4%) > POCa(average reduction of 14.8%). The potentially mineralizable C(C_(0)) was significantly higher in upland soil than in paddy soil, but the corresponding decay constant(k) was lower in upland soil than in paddy soil. Random forest model and partial correlation analysis showed that EOCa and pH were the important nutrient and physicochemical factors impacting k of C mineralization in paddy soil,while MOCa and C-related enzyme(β-D-cellobiohydrolase) were identified as the key factors in upland soil. In conclusion, this study evidenced that soil conversion from paddy soil to upland soil increased the percentage of macro-aggregates and aggregate stability, while decreased soil aggregate-associated C stock and k of soil C mineralization on a scale of ten years. Our findings provided some new insights into the alterations of soil aggregates and potential C sequestration under soil conversion system in rice-producing areas. 展开更多
关键词 decay constant easily oxidized organic c macro-aggregate meso-aggregate MIcRO-AGGREGATE mineral-bound organic c particulate organic c potentially mineralizable c
原文传递
Long-term manure application increased soil organic carbon and nitrogen mineralization through accumulation of unprotected and physically protected carbon fractions 被引量:1
7
作者 Muhammad Nadeem ASHRAF Cheng HU +7 位作者 Xiangru XU Tariq AZIZ Lei WU Muhammad Ahmed WAQAS Muhammad FAROOQ Xu HU Wenju ZHANG Minggang XU 《Pedosphere》 SCIE CAS CSCD 2023年第2期343-354,共12页
Soil organic carbon(SOC)and nitrogen(N)mineralization are important biogeochemical processes associated with soil fertility.These processes are influenced by physically,chemically,and biologically stabilized SOC fract... Soil organic carbon(SOC)and nitrogen(N)mineralization are important biogeochemical processes associated with soil fertility.These processes are influenced by physically,chemically,and biologically stabilized SOC fractions,the mechanisms of which are not well known.The present study was conducted to evaluate the combined effect of manure and mineral fertilizers on the contents of SOC fractions to promote the mineralization of SOC and N.Treatments included:i)no fertilizer control(CK);ii)a combination of mineral N,phosphorus,and potassium fertilizers(NPK);iii)manure alone(M);iv)manure combined with NPK(MNPK);and v)a high dose of manure combined with NPK(hMNPK).The combined uses of manure and mineral fertilizers(MNPK and hMNPK)enhanced the accumulation of the unprotected coarse particulate organic carbon(C)fraction(cPOC)by 44%-72%compared to CK.Manure applications(M,MNPK and hMNPK)enhanced physically microaggregate-protected organic C(μagg),physicochemically protected organic C within the microaggregate-derived silt(μsilt)fraction(H-μsilt),and physicobiochemically protected organic C within theμsilt fraction(NH-μsilt)by 30%-56%,62%-150%,and 27%-51%,respectively.In contrast,all chemically and biochemically protected SOC fractions showed a minor response to manure application.Accumulation of cPOC,μagg,H-μsilt,and physicochemically protected organic C within the microaggregate-derived clay fraction(H-μclay)significantly contributed to the mineralization of SOC and N,resulting in a significant increase in rice grain yield with long-term manure application.In summary,long-term combined use of manure and mineral fertilizers improved SOC accumulation in unprotected and physically protected fractions,which enhanced SOC and N mineralization and benefited soil productivity in a rice-wheat cropping system. 展开更多
关键词 fertilization strategy grain yield organic c fraction organic matter stabilization protection mechanism
原文传递
Organic Geochemistry of the Early Jurassic Oil Shale from the Shuanghu Area in Northern Tibet and the Early Toarcian Oceanic Anoxic Event 被引量:16
8
作者 CHENLan YIHaisheng +2 位作者 HURuizhong ZHONGHong ZOUYanrong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第3期392-397,共6页
This paper presents new geological and geochemical data from the Shuanghu area in northern Tibet, which recorded the Early Toarcian Oceanic Anoxic Event. The stratigraphic succession in the Shuanghu area consists most... This paper presents new geological and geochemical data from the Shuanghu area in northern Tibet, which recorded the Early Toarcian Oceanic Anoxic Event. The stratigraphic succession in the Shuanghu area consists mostly of grey to dark-colored alternating oil shales, marls and mudstones. Ammonite beds are found at the top of the Shuanghu oil shale section, which are principally of early Toarcian age, roughly within the Harplocearas falciferrum Zone. Therefore, the oil shale strata at Shuanghu can be correlated with early Toarcian black shales distributing extensively in the European epicontinental seas that contain the records of an Oceanic Anoxic Event. Sedimentary organic matter of laminated shale anomalously rich in organic carbon across the Shuanghu area is characterized by high organic carbon contents, ranging from 1.8% to 26.1%. The carbon isotope curve displays the δ 13C values of the kerogen (δ 13Ckerogen) fluctuating from –26.22 to –23.53‰ PDB with a positive excursion close to 2.17‰, which, albeit significantly smaller, may also have been associated with other Early Toarcian Oceanic Anoxic Events (OAEs) in Europe. The organic atomic C/N ratios range between 6 and 43, and the curve of C/N ratios is consistent with that of the δ 13Ckerogen values. The biological assemblage, characterized by scarcity of benthic organisms and bloom of calcareous nannofossils (coccoliths), reveals high biological productivity in the surface water and an unfavorable environment for the benthic fauna in the bottom water during the Oceanic Anoxic Event. On the basis of organic geochemistry and characteristics of the biological assemblage, this study suggests that the carbon-isotope excursion is caused by the changes of sea level and productivity, and that the black shale deposition, especially oil shales, is related to the bloom and high productivity of coccoliths. 展开更多
关键词 oil shales Early Toarcian organic carbon isotope organic atomic c/N ratios Oceanic Anoxic Events northern Tibet
下载PDF
Carbon and nitrogen isotopic composition of particulate organic matter and its biogeochemical implication in the Bering Sea 被引量:2
9
作者 LIN Feng CHEN Min +3 位作者 TONG Jinlu CAO Jianping QIU Yusheng ZHENG Minfang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第12期40-47,共8页
Stable carbon and nitrogen isotopic composition of particulate organic matter (POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon (POC) and particulate nitrogen... Stable carbon and nitrogen isotopic composition of particulate organic matter (POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon (POC) and particulate nitrogen (PN) showed high concentrations in the shelf and slope regions and decreased with depth in the slope and basin, indicating that biological processes play an important role on POM distribution. The low C/N ratio and heavy isotopic composition of POM, compared to those from the Alaska River, suggested a predominant contribution of marine biogenic organic matter in the Bering Sea. The fact thatδ^13Candδ^15Ngenerally increased with depth in the Bering Sea basin demonstrated that organic components with light carbon or nitrogen were decomposed preferentially during their transport to deep water. However, the highδ^13Candδ^15Nobserved in shelf bottom water were mostly resulted from sediment resuspension. 展开更多
关键词 particulate organic matter ^13c ^15N Bering Sea
下载PDF
High Responsivity Organic Ultraviolet Photodetector Based on NPB Donor and C60 Acceptor
10
作者 王永繁 曲奉东 +4 位作者 周敬然 郭文斌 董玮 刘彩霞 阮圣平 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期200-203,共4页
We report fabrication and characterization of organic heterojunction UV detectors based on N,N'-bis(naphthalen- 1-y1)-N,N'-bis (phenyl) benzidine (NPB) and fullerene C60. The effects of different thicknesses o... We report fabrication and characterization of organic heterojunction UV detectors based on N,N'-bis(naphthalen- 1-y1)-N,N'-bis (phenyl) benzidine (NPB) and fullerene C60. The effects of different thicknesses of NPB and C60 layers are studied and compared. Notably, the optimal thicknesses of electron acceptor C60 and electron donor NPB are 40 nm and 80 nm, respectively. The J V characteristic curves of the device demonstrate a three-order- of-magnitude difference when illuminated under a 350nm UV light and in the dark at -0.5 V. The device exhibits high sensitivity in the region of 320-380nm with the peak located around 35Onm. Especially, it shows excellent photo-response characteristic with a responsivity as high as 315 mA/W under the illumination of 192μW.cm 2 350nm UV light at -5 V. These results indicate that the NPB/C60 heterojunction structure device might be used as low-cost low-voltage UV photodetectors. 展开更多
关键词 NPB AccEPTOR High Responsivity organic Ultraviolet Photodetector Based on NPB Donor and c
下载PDF
Four years of free-air CO_2 enrichment enhance soil C concentrations in a Chinese wheat field 被引量:2
11
作者 ZHONG Shuang LIANG Wenju +2 位作者 LOU Yilai LI Qi ZHU Jianguo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第9期1221-1224,共4页
Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass... Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass C (Cmic) and soil basal respiration (SBR) were investigated in a Chinese wheat field after expose to elevated CO2 for four full years. The results indicated that elevated CO2 has stimulative effects on soil C concentrations regardless of N fertilization. Following the elevated CO2, the concentrations of Corg and SBR were increased at wheat jointing stage, and those of DOC and Cmic were enhanced obviously across the wheat jointing stage and the fallow period after wheat harvest. On the other hand, N fertilization did not significantly affect the content of soil C. Significant correlations were found among DOC, Cmic, and SBR in this study. 展开更多
关键词 dissolved organic c free air cO2 enrichment microbial biomass c N fertilization soil basal respiration soil organic c
下载PDF
Effects of cotton field management practices on soil CO2 emission and C balance in an arid region of Northwest China 被引量:8
12
作者 QianBing ZHANG Ling YANG +4 位作者 ZhenZhu XU YaLi ZHANG HongHai LUO Jin WANG WangFeng ZHANG 《Journal of Arid Land》 SCIE CSCD 2014年第4期468-477,共10页
Changes in both soil organic C storage and soil respiration in farmland ecosystems may affect atmospheric CO2 concentration and global C cycle. The objective of this field experiment was to study the effects of three ... Changes in both soil organic C storage and soil respiration in farmland ecosystems may affect atmospheric CO2 concentration and global C cycle. The objective of this field experiment was to study the effects of three crop field management practices on soil CO2 emission and C balance in a cotton field in an arid region of Northwest China. The three management practices were irrigation methods(drip and flood), stubble managements(stubble-incorporated and stubble-removed) and fertilizer amendments(no fertilizer(CK), chicken manure(OM), inorganic N, P and K fertilizer(NPK), and inorganic fertilizer plus chicken manure(NPK+OM)). The results showed that within the C pool range, soil CO2 emission during the whole growing season was higher in the drip irrigation treatment than in the corresponding flood irrigation treatment, while soil organic C concentration was larger in the flood irrigation treatment than in the corresponding drip irrigation treatment. Furthermore, soil CO2 emission and organic C concentration were all higher in the stubble-incorporated treatment than in the corresponding stubble-removed treatment, and larger in the NPK+OM treatment than in the other three fertilizer amendments within the C pool range. The combination of flood irrigation, stubble incorporation and application of either NPK+OM or OM increased soil organic C concentration in the 0-60 cm soil depth. Calculation of net ecosystem productivity(NEP) under different management practices indicated that the combination of drip irrigation, stubble incorporation and NPK+OM increased the size of the C pool most, followed by the combination of drip irrigation, stubble incorporation and NPK. In conclusion, management practices have significant impacts on soil CO2 emission, organic C concentration and C balance in cotton fields. Consequently, appropriate management practices, such as the combination of drip irrigation, stubble incorporation, and either NPK+OM or NPK could increase soil C storage in cotton fields of Northwest China. 展开更多
关键词 arid region oasis cotton field management practices soil c balance soil organic c soil respiration
下载PDF
Effect of Zinc and Composting Time on Dynamics of Different Soluble Copper in Chicken Manures 被引量:2
13
作者 LU Li-lan WANG Xu-dong XU Ming-hui 《Agricultural Sciences in China》 CSCD 2010年第6期861-870,共10页
Chicken manures added with Cu and Zn were used for composting experiment to study the dynamics of different soluble humus complexed copper (H2O-Cu,NaOH-Cu and NaOH-Na4P2O7-Cu).The effect of zinc in compost on humus ... Chicken manures added with Cu and Zn were used for composting experiment to study the dynamics of different soluble humus complexed copper (H2O-Cu,NaOH-Cu and NaOH-Na4P2O7-Cu).The effect of zinc in compost on humus complexed copper and the relationship between humus complexed copper were also revealed.The results showed that H2O-Cu increased before the 45 d of composting and decreased thereafter.In the treatments of 1:1,2:1 and 3:1 with the added copper content increasing,H2O-Cu increased with decomposition process.Added high level zinc in manure could decrease the relative H2O-Cu content at the last stage of composting.NaOH-Cu decreased greatly with the compost proceeding.With the added copper content increasing in manure,the percentage of NaOH-Cu to total copper decreased.Added zinc had no significant impact on NaOH-Cu concentration.NaOH-Na4P2O7-Cu increased with composting.With the added copper content increasing in compost manure,the percentage of NaOH-Na4P2O7-Cu to total copper increased,and showed an increase trend with composting proceeding.Added zinc in manure increased NaOH-Na4P2O7-Cu.In composts,55-80% of extracted copper was present in NaOH fraction,10-30% in NaOH-Na4P2O7-Cu fraction,and 0-10% in H2O fraction.Whatever the added copper or zinc contents increased in manures,the distribution percent of NaOH- Na4P2O7-Cu (pressed as percent of extracted Cu) increased and that of H2O-Cu and NaOH-Cu decreased.Three extracted Cu (H2O,NaOH and Na4P2O7) were strongly correlated to each other,H2O-Cu and NaOH-Na4P2O7-Cu were significantly correlated to H2O-extracted organic C and NaOH-Na4P2O7-extracted organic C,respectively. 展开更多
关键词 chicken manure extractable copper extractable organic c
下载PDF
Changing landscape of hepatitis C virus-positive donors 被引量:1
14
作者 Catherine E Kling Ajit P Limaye Lena Sibulesky 《World Journal of Hepatology》 CAS 2017年第20期905-906,共2页
With the introduction of the new highly effective antiviral therapies, there has been a dramatic increase in the use of the hepatitis C virus(HCV)-positive livers in HCV-positive recipients. In the majority of studies... With the introduction of the new highly effective antiviral therapies, there has been a dramatic increase in the use of the hepatitis C virus(HCV)-positive livers in HCV-positive recipients. In the majority of studies, HCV positivity was defined as a donor testing HCV Ab positive. In 2015, all Organ Procurement Organizations were mandated to perform and report HCV Nucleic Acid Amplification Testing(NAT) results on all deceased and living donors. Studies are not yet available on how organs are being utilized based on NAT status and whether NAT status affects recipient outcomes. Further studies are needed to maximize the use of these organs. 展开更多
关键词 Heptitis c organ utilization Hepatitis c virus aviremic Liver transplantation Hepatitis c positive recipients
下载PDF
Biological Significance of [^(14)C]Phenol Accumulation in Different Organs of a Murrel, Channa punctatus, and the Common Carp, Cyprinus carpio 被引量:1
15
作者 DILIP MUKHERJEE DILIP MUKHERJEE +2 位作者 SHELLEY BHATTACHARYA VINOD KUMAR JAIDEEP MOITRA 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1990年第3期337-342,共6页
Phenol, a ubiquitous component of industrial effluents, is a common pollutant of water resources and a serious threat to fish.The present work demonstrates that a significant amount of phenol is retained by various ti... Phenol, a ubiquitous component of industrial effluents, is a common pollutant of water resources and a serious threat to fish.The present work demonstrates that a significant amount of phenol is retained by various tissues of the common carp.Cyprinus carpio.and the snake-headed murrel.Channa punclatus.The rate of [^(14)C] phenol accumulation was higher in the carp than in the murrel.It is suggested that retention of phenol in the brain and ovary may seriously afiect the reproductive potential of the fish. 1990 Academic Press.Inc. 展开更多
关键词 cyprinus carpio Biological Significance of c]Phenol Accumulation in Different Organs of a Murrel channa punctatus
下载PDF
Land use effects on the dynamics of soil C,N and microbes in the water-wind erosion crisscross region of the northern Loess Plateau,China
16
作者 Yi WANG Chunyue LI Shunjin HU 《Pedosphere》 SCIE CAS CSCD 2024年第1期181-190,共10页
The water-wind erosion crisscross region of the northern Loess Plateau in China is under constant pressure from severe erosion due to its windy and dry climate and intensive human activities. Identifying sustainable l... The water-wind erosion crisscross region of the northern Loess Plateau in China is under constant pressure from severe erosion due to its windy and dry climate and intensive human activities. Identifying sustainable land use patterns is key to maintaining ecosystem sustainability in the area. Our aim was to appraise the impacts of different land use regimes on the dynamics of soil total organic C(TOC), total N(TN), and microbes in a typical watershed in the northern Loess Plateau to identify suitable land use types that can maintain soil fertility and sustainability. A field experiment was performed in Liudaogou watershed in Shenmu City, Shaanxi Province, China, where the dynamics of soil TOC and TN, microbial biomass C and N, microbial respiration, and net N mineralization in six typical land use types, dam land, rainfed slope land, deciduous broadleaf forest, evergreen coniferous forest, shrubland, and grassland,were measured in three different growing seasons. Land use type and season significantly affected TOC, TN, and the dynamics of microbial biomass and activity. As the most anthropogenically disturbed land use pattern, dam land was an optimal land use pattern for TOC sequestration due to its higher TOC and TN, but lower microbial activity. Soil TOC, TN, and microbial properties demonstrated a decreasing trend after natural grassland was converted to shrubland,forest, and rainfed slope land. Shrubland with exotic N-fixing Korshinsk peashrub(Caragana korshinskii Kom.) can maintain TOC, TN, and microbial properties similar to those in grassland. Soil TOC, NH_(4+)^(-)N, TN, moisture, and extractable C were the principal indexes for soil microbial biomass and activity and explained 88.90% of the total variance. Thus, grassland was the optimal land use pattern in the water-wind erosion crisscross region of the northern Loess Plateau to maintain ecosystem stability and sustainability. 展开更多
关键词 GRASSLAND microbial activity microbial biomass total organic c total N WATERSHED
原文传递
Intensive management enhances mycorrhizal respiration but decreases free-living microbial respiration by affecting microbial abundance and community structure in Moso bamboo forest soils
17
作者 Wenhao JIN Jiangfei GE +6 位作者 Shuai SHAO Liyuan PENG Jiajia XING Chenfei LIANG Junhui CHEN Qiufang XU Hua QIN 《Pedosphere》 SCIE CAS CSCD 2024年第2期508-519,共12页
Intensive management is known to markedly alter soil carbon(C)storage and turnover in Moso bamboo forests compared with extensive management.However,the effects of intensive management on soil respiration(RS)component... Intensive management is known to markedly alter soil carbon(C)storage and turnover in Moso bamboo forests compared with extensive management.However,the effects of intensive management on soil respiration(RS)components remain unclear.This study aimed to evaluate the changes in different RScomponents(root,mycorrhizal,and free-living microorganism respiration)in Moso bamboo forests under extensive and intensive management practices.A1-year in-situ microcosm experiment was conducted to quantify the RScomponents in Moso bamboo forests under the two management practices using mesh screens of varying sizes.The results showed that the total RSand its components exhibited similar seasonal variability between the two management practices.Compared with extensive management,intensive management significantly increased cumulative respiration from mycorrhizal fungi by 36.73%,while decreased cumulative respiration from free-living soil microorganisms by 8.97%.Moreover,the abundance of arbuscular mycorrhizal fungi(AMF)increased by 43.38%,but bacterial and fungal abundances decreased by 21.65%and 33.30%,respectively,under intensive management.Both management practices significantly changed the bacterial community composition,which could be mainly explained by soil pH and available potassium.Mycorrhizal fungi and intensive management affected the interrelationships between bacterial members.Structural equation modeling indicated that intensive management changed the cumulative RSby elevating AMF abundance and lowering bacterial abundance.We concluded that intensive management reduced the microbial respiration-derived C loss,but increased mycorrhizal respiration-derived C loss. 展开更多
关键词 arbuscular mycorrhizal fungi extensive management microbial co-occurrence network root respiration soil organic c soil respiration structural equation model
原文传递
Long-term fertilization and residue return affect soil stoichiometry characteristics and labile soil organic matter fractions 被引量:2
18
作者 Shasha LUO Qiang GAO +4 位作者 Shaojie WANG Lei TIAN Qi ZHOU Xiujun LI Chunjie TIAN 《Pedosphere》 SCIE CAS CSCD 2020年第5期703-713,共11页
Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon(C),nitrogen(N),and phosphorus(P)metabolisms in response to agricultural nutrient management.To determine the roles of f... Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon(C),nitrogen(N),and phosphorus(P)metabolisms in response to agricultural nutrient management.To determine the roles of fertilization and residue return with respect to ecological stoichiometry,we collected soil samples from a 30-year field experiment on residue return(maize straw)at rates of 0,2.5,and 5.0 Mg ha^-1 in combination with 8 fertilization treatments:no fertilizer(F0),N fertilizer,P fertilizer,potassium(K)fertilizer,N and P(NP)fertilizers,N and K(NK)fertilizers,P and K(PK)fertilizers,and N,P,and K(NPK)fertilizers.We measured soil organic C(SOC),total N and P,microbial biomass C,N,and P,water-soluble organic C and N,KMnO4-oxidizabIe C(KMnO4-C),and carbon management index(CMI).Compared with the control(F0 treatment without residue return),fertilization and residue return significantly increased the KMn〇4-C content and CMI.Furthermore,compared with the control,residue return significantly increased the SOC content.Moreover,the NPK treatment with residue return at 5.0 Mg ha^-1 significantly enhanced the C:N,C:P,and N:P ratios in the soil,whereas it significantly decreased the C:N and C:P ratios in soil microbial biomass.Therefore,NPK fertilizer application combined with residue return at 5.0 Mg ha^-1 could enhance the SOC content through the stoichiometric plasticity of microorganisms.Residue return and fertilization increased the soil C pools by directly modifying the microbial stoichiometry of the biomass that was C limited. 展开更多
关键词 balanced fertilization carbon management index ecological stoichiometry microbial biomass soil organic c
原文传递
Aquatic Species Dominate Organic Matter in Qinghai Lake during the Holocene:Evidence from Eolian Deposits around the Lake 被引量:7
19
作者 Fangming Zeng Xiangjun Liu +1 位作者 Xiangzhong Li Chongyi E 《Journal of Earth Science》 SCIE CAS CSCD 2017年第3期484-491,共8页
Total organic carbon(TOC) in lake sediments and its stable carbon isotope(δ(13)C(org)) are widely applied to investigate paleoenvironmental changes even though their implications are complicated and multi-exp... Total organic carbon(TOC) in lake sediments and its stable carbon isotope(δ(13)C(org)) are widely applied to investigate paleoenvironmental changes even though their implications are complicated and multi-explanatory. Organic geochemistry studies of lake sediments from Qinghai Lake have been investigated, but some interpretations are controversial. In this study, TOC of one Holocene eolian section and δ(13)C(org) of three eolian sections were studied around Qinghai Lake. Results indicate that the TOC content in eolian deposits was low during the Early Holocene, and gradually increased to high values during the Middle and Late Holocene. The variation in TOC content of eolian deposits is different from that in the lacustrine sequence from Qinghai Lake during the Holocene. The δ(13)C(org) values in the eolian sections were relatively stable, with oscillation amplitudes of 4‰(ranging from-25.8‰ to-22.1‰), in contrast to 10‰ variation s in δ(13)C(org) values(varying from-30‰ to-20‰) in lacustrine sediments. Through comparison of TOC and δ(13)C(org) values between eolian deposits and lacustrine sediments, we can confirm indications that the organic matter in Qinghai Lake sediments during the Holocene was primarily a contribution of the aquatic species in the lake. This is significant for understanding the origin of organic matter in lake sediments on the northeastern Qinghai-Tibetan Plateau and for paleoenvironmental inferences using such proxies. 展开更多
关键词 Qinghai Lake total organic carbon(TOc organic carbon isotope(δ(13)c(org)) Qinghai-Tibetan Plateau
原文传递
Responses of soil microbial communities to manure and biochar in wheat cultivation of a rice-wheat rotation agroecosystem in East China
20
作者 Jun MENG Wenjin LI +7 位作者 Yingbo QIU Zhangtao LI Linze LI Yu LUO Haipeng GUO Yijun YU Shengdao SHAN Huaihai CHEN 《Pedosphere》 SCIE CAS CSCD 2023年第6期893-904,共12页
Soil contamination in agroecosystems remains a global environmental problem. Biochar has been suggested as an organic amendment to alleviate soil pollution, sequester carbon(C), and improve soil fertility. However, in... Soil contamination in agroecosystems remains a global environmental problem. Biochar has been suggested as an organic amendment to alleviate soil pollution, sequester carbon(C), and improve soil fertility. However, information on how bacterial and fungal communities in acidic bulk and rhizosphere soils respond to swine manure and its biochar is still lacking. In this study, biochar and swine manure were applied at two rates of 1.5 and 3 t ha-1in a rice-wheat rotation field to assess how soil characteristics, especially p H and chemical element availability, correlate to compositional variations of bacteria and fungi in bulk and rhizosphere soils. Our results showed that high rates of biochar and manure promoted the bacterial richness in bulk and rhizosphere soils by increasing soil pH and reducing soil arsenic(As) and copper(Cu) availability. Compared with soil As and Cu availability, soil p H had opposite effects on beta diversity of both the bacterial and fungal communities. Specifically, biochar and swine manure applications stimulated the bacterial classes Gemmatimonadetes, Deltaproteobacteria, and Gammaproteobacteria by increasing soil pH and decreasing soil available chemical elements. Opposite trends were observed in fungal communities responding to biochar and manure. For example, biochar restrained the fungal class Eurotiomycetes by decreasing soil As and Cu availability, but manure inhibited Leotiomycetes mainly because of an increase in soil pH and a decrease in soil dissolved organic C. These suggest that both bacterial and fungal communities respond significantly to biochar and manure amendments in both bulk and rhizosphere soils, possibly because of their sensitive adaptation to variations in soil environmental factors, such as pH level and chemical element availability. 展开更多
关键词 bacteria chemical element element availability FUNGI RHIZOSPHERE soil dissolved organic c soil pH
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部