期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Contents of soil organic carbon and nitrogen in water-stable aggregates in abandoned agricultural lands in an arid ecosystem of Northwest China 被引量:6
1
作者 WANG Junqiang LIU Lichao +3 位作者 QIU Xiaoqing WEI Yujie LI Yanrong SHI Zhiguo 《Journal of Arid Land》 SCIE CSCD 2016年第3期350-363,共14页
Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, an... Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes &gt;2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes &lt;0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(&lt;0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term. 展开更多
关键词 aggregate stability water-stable aggregates agricultural abandonment soil organic carbon total nitrogen northwestern China
下载PDF
Effects of Long-Term Winter Planted Green Manure on Distribution and Storage of Organic Carbon and Nitrogen in Water-Stable Aggregates of Reddish Paddy Soil Under a Double-Rice Cropping System 被引量:32
2
作者 YANG Zeng-ping ZHENG Sheng-xian +2 位作者 NIE Jun LIAO Yu-lin XIE Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第8期1772-1781,共10页
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrie... In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases. 展开更多
关键词 green manure organic carbon reddish paddy soil total nitrogen water-stable aggregates
下载PDF
Response of Soil Organic Carbon and Its Aggregate Fractions to LongTerm Fertilization in Irrigated Desert Soil of China 被引量:3
3
作者 CHAI Yan-jun ZENG Xi-bai +4 位作者 E Sheng-zhe HUANG Tao CHE Zong-xian SU Shi-ming BAI Ling-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第12期2758-2767,共10页
Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its wate... Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its water stable aggregate (WSA) size fractions were studied. The effects of various fertilization methods on the distribution of added organic carbon (OC) in different WSA size fractions were also analyzed. The results showed that the applied fertilizations for 23 years improved SOC concentrations and OC concentrations in all WSA size fractions compared to the non-fertilized treatment (CK). In addition, fertilization obviously increased the OC stocks of2 mm, 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. A signiifcant positive correlation was found between soil C gains and OC inputs (r=0.92, P〈0.05), indicating that SOC may have not reached the saturation point yet at the site. The C sequestration rate was estimated by 14.02%at the site. The OC stocks in all of the〈2 mm WSA fractions increased with the increase of OC input amounts;and the conversion rate of the input fresh OC to the OC stock of〈0.053 mm WSA fraction was 1.2 and 2.6 times higher than those of the 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. Therefore, the〈0.053 mm WSA fraction was the most important component for soil C sequestration in the irrigated desert soil. 展开更多
关键词 aggregate irrigated desert soil long-term fertilization organic carbon
下载PDF
Light-controlled mass formation of aggregates of molecules in organic compounds
4
作者 Tariel D.Ebralidze Nadia A.Ebralidze +1 位作者 Giorgi A.Mumladze Enriko S.Kitsmarishvili 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第9期823-825,共3页
During the mass formation of aggregates of molecules in a gelatin film dyed with the mixture of chrysophenine and acridine yellow dyes, photo-reorientation, photo-disorientation, and photo-orientation of the molecules... During the mass formation of aggregates of molecules in a gelatin film dyed with the mixture of chrysophenine and acridine yellow dyes, photo-reorientation, photo-disorientation, and photo-orientation of the molecules are observed. Based on these observations, the photo-induction of granular aniso tropy may be realized. 展开更多
关键词 Light-controlled mass formation of aggregates of molecules in organic compounds
原文传递
Switching on/off phosphorescent or non-radiative channels by aggregation-induced quantum interference
5
作者 Yi Kong Yu-Chen Wang +2 位作者 Xunkun Huang WanZhen Liang Yi Zhao 《Aggregate》 EI CAS 2024年第1期175-184,共10页
Pure organic materials with persistent and efficient room-temperature phosphorescence have recently aroused great research interest due to their vast potential in applications.One crucial design principle for such mat... Pure organic materials with persistent and efficient room-temperature phosphorescence have recently aroused great research interest due to their vast potential in applications.One crucial design principle for such materials is to suppress as much as possible the non-radiative decay of the triplet exciton while maintaining a moderate phosphorescent radiative rate.However,molecular engineering often exhibits similar regulation trends for the two processes.Here,we propose that the quantum interference caused by aggregation can be utilized to control the phosphorescent and non-radiative decay channels.We systematically analyze various constructive and destructive transition pathways in aggregates with different molecular packing types and establish clear relationships between the luminescence characters and the signs of the singlet and triplet excitonic couplings.It is shown that the decay channels can be flexibly switched on or off by regulating the packing type and excitonic couplings.Most importantly,an enhanced phosphorescent decay and a completely suppressed non-radiative decay can be simultaneously realized in the aggregate packed with inversion symmetry.This work lays the theoretical foundation for future experimental realization of quantum interference effects in phosphorescence. 展开更多
关键词 excitonic coupling intersystem crossing organic aggregates organic room temperature phosphorescence quantum interference
原文传递
Complex interplay between formation routes and natural organic matter modification controls capabilities of C_(60)nanoparticles(nC_(60)) to accumulate organic contaminants 被引量:5
6
作者 Lei Hou John D.Fortner +3 位作者 Ximeng Wang Chengdong Zhang Lilin Wang Wei Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第1期315-323,共9页
Accumulation of organic contaminants on fullerene nanoparticles(nC(60)) may significantly affect the risks of C(60) in the environment.The objective of this study was to further understand how the interplay of n... Accumulation of organic contaminants on fullerene nanoparticles(nC(60)) may significantly affect the risks of C(60) in the environment.The objective of this study was to further understand how the interplay of nC(60) formation routes and humic acid modification affects contaminant adsorption of nC(60).Specifically,adsorption of 1,2,4,5-tetrachlorobenzene(a model nonionic,hydrophobic organic contaminant) on nC(60) was greatly affected by nC(60)formation route- the formation route significantly affected the aggregation properties of nC(60),thus affecting the available surface area and the extent of adsorption via the pore-filling mechanism.Depending on whether nC(60) was formed via the "top-down" route(i.e.,sonicating C(60) powder in aqueous solution) or "bottom-up" route(i.e.,phase transfer from an organic solvent) and the type of solvent involved(toluene versus tetrahydrofuran),modification of nC(60) with Suwannee River humic acid(SRHA) could either enhance or inhibit the adsorption affinity of nC(60).The net effect depended on the specific way in which SRHA interacted with C(60) monomers and/or C(60) aggregates of different sizes and morphology,which determined the relative importance of enhanced adsorption from SRHA modification via preventing C(60) aggregation and inhibited adsorption through blocking available adsorption sites.The findings further demonstrate the complex mechanisms controlling interactions between nC(60) and organic contaminants,and may have significant implications for the life-cycle analysis and risk assessment of C(60). 展开更多
关键词 Fullerene nanoparticles Aggregation Natural organic matter organic contaminants Adsorption
原文传递
Is there a silver lining? Aggregation and photo-transformation of silver nanoparticles in environmental waters 被引量:4
7
作者 Qi Zheng Michael Zhou +1 位作者 Wenchao Deng X.Chris Le 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第8期259-262,共4页
The nanotechnology industry advances rapidly,and at the vanguard are the promising silver nanoparticles(Ag NPs),which have diverse applications.These nanometer-sized particles have been shown to inhibit the ability ... The nanotechnology industry advances rapidly,and at the vanguard are the promising silver nanoparticles(Ag NPs),which have diverse applications.These nanometer-sized particles have been shown to inhibit the ability of bacteria to produce adenosine triphosphate(ATP),a molecule necessary for chemical energy transport in cells.The antimicrobial properties of Ag NPs(and Ag+)make them valued antibacterial 展开更多
关键词 Silver nanoparticles(AgNPs) Nanomaterials Water chemistry Aggregation Transformation Toxicology Dissolved organic matter(DOM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部