期刊文献+
共找到1,292篇文章
< 1 2 65 >
每页显示 20 50 100
Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates
1
作者 Shanshan Cai Lei Sun +7 位作者 Wei Wang Yan Li Jianli Ding Liang Jin Yumei Li Jiuming Zhang Jingkuan Wang Dan Wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1703-1717,共15页
Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How st... Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear.Here,a straw mulching treatment was compared to a no mulching treatment(as a control)on sloping farmland with black soil erosion in Northeast China.We divided the soil into large macroaggregates(>2 mm),small macroaggregates(0.25-2 mm),and microaggregates(<0.25 mm).After five rain events,the effects of straw mulching on the concentration(characterized by dissolved organic carbon(DoC)and composition(analyzed by fluorescence spectroscopy)of runoff and soil aggregate DOM were studied.The results showed that straw mulching reduced the runoff amount by 54.7%.Therefore,although straw mulching increased the average DOc concentration in runoff,it reduced the total runoff DOM loss by 48.3%.The composition of runoff DOM is similar to that of soil,as both contain humic-like acid and protein-like components.With straw mulching treatment,the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events.Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics.A variation partitioning analysis(VPA)indicated that the DOM concentration and composition of microaggregates explained 68.2%of the change in runoff DOM from no mulching plots,while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%.Taken together,our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates,thus effecting DOM compositions in soil and reducing the DOM loss in runoff.These results provide a theoretical basis for reducing carbon loss in sloping farmland. 展开更多
关键词 dissolved organic matter black soil surface runoff aggregates fluorescence spectrum
下载PDF
Homochiral metalated tetraphenylethylene-based organic cages: Unusual chiral and luminescent behavior depending on thermodynamic and kinetic aggregation
2
作者 Hao-Jie Zhang Ya-Liang Lai +7 位作者 Hu Yang Xian-Chao Zhou Zi-Jun Yuan Li Deng Xiao-Lan Hu Xue Li Xiao-Ping Zhou Dan Li 《Aggregate》 EI CAS 2024年第5期423-432,共10页
Chirality and luminescence are important for both chemistry and biology,which are highly influenced by aggregation.In this work,a pair of metalated tetraphenylethylene(TPE)-based organic cage enantiomers are reported,w... Chirality and luminescence are important for both chemistry and biology,which are highly influenced by aggregation.In this work,a pair of metalated tetraphenylethylene(TPE)-based organic cage enantiomers are reported,which fea-ture a quadrangular prismatic cage structure.These homochiral cages exhibit concentration-dependent chiral behaviors alongside a propensity for thermodynamic aggregation.Aggregation caused quench effect is found for these cages accom-panying the increasing of the concentrations.When a poor solvent is added to produce a kinetical aggregation,the aggregation-annihilation circular dichroism and aggregation-induced emission behaviors are observed for these enantiomeric cages.By comparing these observations with the photophysical behaviors of a pair of structurally similar organic molecular enantiomers,the unique photophysical proper-ties observed are intricately linked to the metal-integrated TPE-functionalized cage structures. 展开更多
关键词 concentration-dependent chirality kinetic aggregation metalated organic cage TETRAPHENYLETHYLENE thermodynamic aggregation
原文传递
The aggregation behaviors of organic radicals in polar fluorinated arenes
3
作者 Shan Liu Yin Yang Tianfei Liu 《Aggregate》 EI CAS 2024年第4期245-255,共11页
Polarfluorinated arenes can promote organic free radical reactions,which have attracted scientists’interest in recent years.However,it is still unknown how these solvents interact weakly with organic radical molecules... Polarfluorinated arenes can promote organic free radical reactions,which have attracted scientists’interest in recent years.However,it is still unknown how these solvents interact weakly with organic radical molecules to influence their reactiv-ity.In this study,we investigated how organic free radicals aggregate infive polarfluorocarbon solvents,and demonstrated that different substituents can influence their aggregation behaviors.In these solvents,small organic radicals with simple substituents maintain a homogeneous solution;however,radicals with substituents that form intermolecular hydrogen bonds or with long-chain aliphatic hydrocarbons tend to aggregate in them,whereas substituents of long-chain aliphatic hydrocar-bons tend to promote aggregation better.The critical aggregation concentrations of these aggregates are measured by concentration-dependent UV–visible spec-troscopy.Their topological morphologies are all spherical based on TEM.The compactness and rotational motivation speed of radical molecules within these aggregates are determined by EPR spectroscopy.The particle sizes of these aggre-gates are determined by analyzing their cyclic voltammograms.Most excitingly,electrochemical experiments reveal that the aggregation behaviors of free radical molecules with intermolecular hydrogen bonds can significantly increase their cat-alytic rate for electro-oxidizing benzyl alcohol in such a solvent.The results of this study indicate that in polarfluorinated arenes organic radical molecules’aggregation behaviors are related to their structures.This may provide guidelines for regulating organic radical reactivity in these solvents in the future. 展开更多
关键词 aggregation behavior organic radical molecules polarfluorinated arenes
原文传递
Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen:A 30-year study 被引量:1
4
作者 BAI Jin-shun ZHANG Shui-qing +5 位作者 HUANG Shao-min XU Xin-peng ZHAO Shi-cheng QIU Shao-jun HE Ping ZHOU Wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3517-3534,共18页
To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Hu... To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-HuaiHai Plain during 1990–2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer(control), chemical fertilizer only(NPK), chemical fertilizer with straw(NPKS), chemical fertilizer with manure(NPKM), and 1.5 times the rate of NPKM(1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil(0–10 and 10–20 cm) and subsoil(20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil(24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers(22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments(NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions(19.8 and 27.0%) than the NPK treatment. However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions(–19.2 and –29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions(i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72(P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers. 展开更多
关键词 soil aggregate fractions soil organic matter manure application straw return C:N ratio
下载PDF
Effect of aggregation on thermally activated delayed fluorescence and ultralong organic phosphorescence:QM/MM study
5
作者 张群 王晓菲 +6 位作者 吴智敏 李小芳 张凯 宋玉志 范建忠 王传奎 蔺丽丽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期410-419,共10页
Aggregation-induced thermally activated delayed fluorescence(TADF)phenomena have attracted extensive attention recently.In this paper,several theoretical models including monomer,dimer,and complex are used for the exp... Aggregation-induced thermally activated delayed fluorescence(TADF)phenomena have attracted extensive attention recently.In this paper,several theoretical models including monomer,dimer,and complex are used for the explanation of the luminescent properties of(R)-5-(9H-carbazol-9-yl)-2-(1,2,3,4-tetrahydronaphthalen-1-yl)isoindoline-1,3-dione((R)-ImNCz),which was recently reported[Chemical Engineering Journal 418129167(2021)].The polarizable continuum model(PCM)and the combined quantum mechanics and molecular mechanics(QM/MM)method are adopted in simulation of the property of the molecule in the gas phase,solvated in acetonitrile and in aggregation states.It is found that large spin–orbit coupling(SOC)constants and a smaller energy gap between the first singlet excited state and the first triplet excited state(△E_(st))in prism-like single crystals(SC_(p)-form)are responsible for the TADF of(R)-lmNCz,while no TADF is found in block-like single crystals(SC_(b)-form)with a larger △E_(st).The multiple ultralong phosphorescence(UOP)peaks in the spectrum are of complex origins,and they are related not only to ImNCz but also to a minor amount of impurities(ImNBd)in the crystal prepared in the laboratory.The dimer has similar phosphorescence emission wavelengths to the(R)-lmNCz-SC_(p) monomers.The complex composed of(R)-lmNCz and(R)-lmNBd contributes to the phosphorescent emission peak at about 600 nm,and the phosphorescent emission peak at about 650 nm is generated by(R)-lmNBd.This indicates that the impurity could also contribute to emission in molecular crystals.The present calculations clarify the relationship between the molecular aggregation and the light-emitting properties of the TADF emitters and will therefore be helpful for the design of potentially more useful TADF emitters. 展开更多
关键词 organic light-emitting diodes thermally activated delayed fluorescence ultralong organic phosphorescence aggregation mode
下载PDF
Effects of Long-Term Winter Planted Green Manure on Distribution and Storage of Organic Carbon and Nitrogen in Water-Stable Aggregates of Reddish Paddy Soil Under a Double-Rice Cropping System 被引量:39
6
作者 YANG Zeng-ping ZHENG Sheng-xian +2 位作者 NIE Jun LIAO Yu-lin XIE Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第8期1772-1781,共10页
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrie... In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases. 展开更多
关键词 green manure organic carbon reddish paddy soil total nitrogen water-stable aggregates
下载PDF
Effects of free iron oxyhydrates and soil organic matter on copper sorption-desorption behavior by size fractions of aggregates from two paddy soils 被引量:14
7
作者 WANG Fang, PAN Genxing, LI Lianqing Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第5期618-624,共7页
Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthro... Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthrosol (Soil H) and Gleyic Stagnic Anthrosol (Soil W)) were investigated with and without treatments of dithionite-citrate-bicarbonate and of H2O2. The size fractions of aggregates were obtained from the undisturbed bulk topsoil using a low energy ultrasonic dispersion procedure. Experiments of equilibrium sorption and subsequent desorption were conducted at soil water ratio of 1:20, 25℃. For Soil H, Cu^2+ sorption capacity of the DCB-treated size fractions was decreased by 5.9% for fine sand fraction, by 40.4% for coarse sand fraction, in comparison to 2.9% for the bnlk sample. However, Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by over 80% for the coarse sand fraction and by 15% for the clay-sized fraction in comparison to 88% for bulk soil. For Soil W, Cu^2+ sorption capacity of the DCB-treated size fraction was decreased by 30% for the coarse sand fraction and by over 75% for silt sand fraction in comparison to 44.5% for the bulk sample. Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by only 2.0% for the coarse sand fraction and by 15% for the fine sand fraction in comparison to by 3.4% for bulk soil. However, Cu^2+ desorption rates were increased much in H2O2-treated samples by over 80% except the clay-sized fraction (only 9.5%) for Soil H. While removal of SOM with H2O2 tendend to increase the desorption rate, DCB- and H2O2-treatments caused decrease in Cu^2+ retention capacity of size fractions, Particularly, there hardly remained Cu^2+ retention capacity by size fractions from Soil H after H2O2 treatment except for clay-sized fraction. These findings supported again the dominance of the coarse sand fraction in sorption of metals and the preference of absorbed metals bound to SOM in differently stabilized status among the size fractions. Thus, enrichment and turnover of SOM in paddy soils may have great effects on metal retention and chemical mobility in paddy soils. 展开更多
关键词 paddy soils Cn^2+ sorption-desorption soil organic matter free iron oxyhydrates size fraction of aggregates
下载PDF
Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs 被引量:7
8
作者 LONG Pan SUI Peng +6 位作者 GAO Wang-sheng WANG Bin-bin HUANG Jian-xiong YAN Peng ZOU Juan-xiu YAN Ling-ling CHEN Yuan-quan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第4期774-787,共14页
To make recycling utilization of organic materials produced in various agricultural systems, five kinds of organic materials were applied in a field test, including crop straw (CS), biogas residue (BR), mushroom r... To make recycling utilization of organic materials produced in various agricultural systems, five kinds of organic materials were applied in a field test, including crop straw (CS), biogas residue (BR), mushroom residue (MR), wine residue (WR), pig manure (PM), with a mineral fertilizer (CF) and a no-fertilizer (CK) treatment as a control. Our objectives were: i) to quantify the effects of organic materials on soil C and N accumulation; ii) to evaluate the effects of organic materials on soil aggregate stability, along with the total organic carbon (TOC), and N in different aggregate fractions; and iii) to assess the relationships among the organic material components, soil C and N, and C, N in aggregate fractions. The trial was conducted in Wuqiao County, Hebei Province, China. The organic materials were incorporated at an equal rate of C, and combined with a mineral fertilizer in amounts of 150 kg N ha^-1, 26 kg P ha^-1 and 124 kg K ha-1 respectively during each crop season of a wheat-maize rotation system. The inputted C quantity of each organic material treatment was equivalent to the total amount of C contained in the crop straw harvested in CS treatement in the previous season. TOC, N, water-stable aggregates, and aggregate-associated TOC and N were investigated. The results showed that organic material incorporation increased soil aggregation and stabilization. On average, the soil macroaggregate proportion increased by 14%, the microaggregate proportion increased by 3%, and mean-weight diameter (MWD) increased by 20%. TOC content followed the order of PM〉WR〉MR〉BR〉CS〉CK〉CF; N content followed the order WR〉PM〉MR〉BR〉CS〉CF〉CK. No significant correlation was found between TOC, N, and the quality of organic material. Soil silt and clay particles contained the largest part of TOC, whereas the small macroaggregate fraction was the most sensitive to organic materials. Our results indicate that PM and WR exerted better effects on soil C and N accumulation, followed by MR and BR, suggesting that organic materials from ex situ farmland could promote soil quality more as compared to straw returned in situ. 展开更多
关键词 organic materials aggregates soil organic carbon soil nitrogen stabilization
下载PDF
Formation and Water Stability of Aggregates in Red Soils as Affected by Organic Matter 被引量:39
9
作者 ZHANG MINGKUI HE ZHENLI +1 位作者 CHEN GUOCHAO HUANG CHANGYONGI andM. J. WILSON ̄2( ̄1DePartment of Land Use and Applied Chemistry, Zhejiang Agricultural University, Hangzhou 31O029(China))( ̄2Soils and Soil Microbiology Division, Macaulay Land Use Research Inst 《Pedosphere》 SCIE CAS CSCD 1996年第1期39-45,共7页
The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studi... The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.smm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils. 展开更多
关键词 aggregATE free oxides organic matter red soil water stability
下载PDF
Effect of Tillage System on Distribution of Aggregates and Organic Carbon in a Hydragric Anthrosol 被引量:17
10
作者 GAO Ming LUO You-Jin WANG Zi-Fang TANG Xiao-Hong WEI Chao-Fu 《Pedosphere》 SCIE CAS CSCD 2008年第5期574-581,共8页
The effect of different tillage systems on the size distribution of aggregates and organic carbon distribution and storage in different size aggregates in a Hydragric Anthrosol were studied in a long-term experiment i... The effect of different tillage systems on the size distribution of aggregates and organic carbon distribution and storage in different size aggregates in a Hydragric Anthrosol were studied in a long-term experiment in Chongqing,China. The experiment included three tillage treatments:conventional tillage with rotation of rice and winter fallow(CT-r) system,no-till and ridge culture with rotation of rice and rape(RT-rr) system,and conventional tillage with rotation of rice and rape(CT-rr) system. The results showed that the aggregates 0.02-0.25 mm in diameter accounted for the largest portion in each soil layer under all treatments. Compared with the CT-r system,in the 0-10 cm layer,the amount of aggregates > 0.02 mm was larger under the RT-rr system,but smaller under the CT-rr system. In the 0-20 cm layer,the organic carbon content of all fractions of aggregates was the highest under the RT-rr system and lowest under the CT-rr system. The total organic carbon content showed a positive linear relationship with the amount of aggregates with diameter ranging from 0.25 to 2 mm. The storage of organic carbon in all fractions of aggregates under the RT-rr system was higher than that under the CT-r system in the 0-20 cm layer,but in the 0-60 cm soil layer,there was no distinct difference. Under the CT-rr system,the storage of organic carbon in all fractions of aggregates was lower than that under the CT-r system;most of the newly lost organic carbon was from the aggregates 0.002-0.02 and 0.02-0.25 mm in diameter. 展开更多
关键词 aggregates Hydragric Anthrosol organic carbon tillage system
下载PDF
Role of Organic Matter in Formation and Stability of Aggregates in Mulberry Plantation Soils 被引量:12
11
作者 LU SHENGGAO Collage of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029 (China) 《Pedosphere》 SCIE CAS CSCD 2001年第2期185-188,共4页
The role of organic matter in the formation and stability of soil aggregates in mulberry plantation in the Hang-Jia-Hu Plain, northern Zhejiang Province, was evaluated in this study. A positive correlation was found b... The role of organic matter in the formation and stability of soil aggregates in mulberry plantation in the Hang-Jia-Hu Plain, northern Zhejiang Province, was evaluated in this study. A positive correlation was found between water-stable aggregate contents and organic matter contents in the mulberry plantation soils, which supported the hypothesis that organic matter was the main cementing agent in formation of aggregates. A close correlation was also found between stability of aggregate and organic matter contents. Regression analysis showed that total nitrogen content was also an indicator of water-stable aggregate content and stability. The aggregate size distribution indicated that the water-stable aggregates 1--0.25 mm in diameter were the major component of the aggregates in the mulberry plantation soils. The organic matter contents of aggregates ranging from 5 to 0.25 mm in diameter increased with the decrease of aggregate sizes, and the aggregates 1-0.25 mm in diameter had the maximum organic matter content. 展开更多
关键词 mulberry plantation soil organic matter water-stable aggregates
下载PDF
Contents of soil organic carbon and nitrogen in water-stable aggregates in abandoned agricultural lands in an arid ecosystem of Northwest China 被引量:6
12
作者 WANG Junqiang LIU Lichao +3 位作者 QIU Xiaoqing WEI Yujie LI Yanrong SHI Zhiguo 《Journal of Arid Land》 SCIE CSCD 2016年第3期350-363,共14页
Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, an... Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes &gt;2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes &lt;0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(&lt;0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term. 展开更多
关键词 aggregate stability water-stable aggregates agricultural abandonment soil organic carbon total nitrogen northwestern China
下载PDF
Soil Aggregates, Organic Matter, and Labile C and N Fractions after 37 Years of N, P and K Applications to an Irrigated Subtropical Soil under Maize-Wheat Rotation 被引量:3
13
作者 S. Kumar M. S. Aulakh A. K. Garg 《Journal of Agricultural Science and Technology(A)》 2011年第2X期170-181,共12页
Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinati... Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinations of fertilizer N (0, 100 and 200 kg N ha^-1), P (0, 22 and 44 kg P2O5 ha^-1) and K (0, 41 and 82 kg K2O ha^-1) applied both to summer-grown maize (Zea mays L.) and winter-grown wheat (Triticum aestivum L.) crops continuously for 37 years under irrigated subtropical conditions. Application of N, P and K significantly increased water stable aggregates and had profound effects in increasing the mean weight diameter as well as the formation of macro-aggregates, which were highest in both surface (81%) and subsurface (74%) soil layers with application of 100 kg N + 22 kg P2O5 + 41 kg K2O ha^-1 (N100P22K41). The N100P22K41 treatment also enhanced total organic C (TOC) from 4.4 g kg^-1 in no-NPK control to 4.8 g kg^-1in surface layer and from 3.3 to 4.1 g kg1 in subsurface layer leading to the 20% higher TOC stocks in 0-15 cm soil. The labile C and N fractions such as water soluble C, particulate and light fraction organic matter, potentially mineralizable N and microbial biomass were also highest under the optimized balanced application of N100P22K41. Relatively higher increase in all labile fractions of C and N as proportion of TOC and total N, respectively suggested that these are potential indicators to reflect changes in management practices long before changes in TOC and TN are detectable. These results demonstrated that optimized balanced application of N, P and K is crucial for improving soil health ensuring long-term sustainability of farming systems in semiarid subtropical soils. 展开更多
关键词 Total organic C water stable aggregate water soluble C particulate and light fraction organic matter potentiallymineralizable N microbial biomass C and N soil health.
下载PDF
Changes in organic C stability within soil aggregates under different fertilization patterns in a greenhouse vegetable field 被引量:1
14
作者 LUAN Hao-an YUAN Shuo +4 位作者 GAO Wei TANG Ji-wei LI Ruo-nan ZHANG Huai-zhi HUANG Shao-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第10期2758-2771,共14页
Knowledge of the stability of soil organic C(SOC)is vital for assessing SOC dynamics and cycling in agroecosystems.Studies have documented the regulatory effect of fertilization on SOC stability in bulk soils.However,... Knowledge of the stability of soil organic C(SOC)is vital for assessing SOC dynamics and cycling in agroecosystems.Studies have documented the regulatory effect of fertilization on SOC stability in bulk soils.However,how fertilization alters organic C stability at the aggregate scale in agroecosystems remains largely unclear.This study aimed to appraise the changes of organic C stability within soil aggregates after eight years of fertilization(chemical vs.organic fertilization)in a greenhouse vegetable field in Tianjin,China.Changes in the stability of organic C in soil aggregates were evaluated by four methods,i.e.,the modified Walkley-Black method(chemical method),13C NMR spectroscopy(spectroscopic method),extracellular enzyme assay(biological method),and thermogravimetric analysis(thermogravimetric method).The aggregates were isolated and separated by a wet-sieving method into four fractions:large macroaggregates(>2 mm),small macroaggregates(0.25–2 mm),microaggregates(0.053–0.25 mm),and silt/clay fractions(<0.053 mm).The results showed that organic amendments increased the organic C content and reduced the chemical,spectroscopic,thermogravimetric,and biological stability of organic C within soil aggregates relative to chemical fertilization alone.Within soil aggregates,the content of organic C was the highest in microaggregates and decreased in the order microaggregates>macroaggregates>silt/clay fractions.Meanwhile,organic C spectroscopic,thermogravimetric,and biological stability were the highest in silt/clay fractions,followed by macroaggregates and microaggregates.Moreover,the modified Walkley-Black method was not suitable for interpreting organic C stability at the aggregate scale due to the weak correlation between organic C chemical properties and other stability characteristics within the soil aggregates.These findings provide scientific insights at the aggregate scale into the changes of organic C properties under fertilization in greenhouse vegetable fields in China. 展开更多
关键词 FERTILIZATION organic C stability soil aggregates thermogravimetric analysis 13C NMR spectroscopy
下载PDF
Effects of Long-Term Fertilization on Distribution of Organic Matters and Nitrogen in Cinnamon Soil Macro-Aggregates 被引量:1
15
作者 SUN Tian-cong LI Shi-qing SHAO Ming-an 《Agricultural Sciences in China》 CAS CSCD 2005年第11期857-864,共8页
Soil samples collected from a 25-year long-term fertilizer experiment carried out on the Earth-cumulic-Orthic Anthrosols in semi-humid farmland ecological system, were used to study the distribution of soil organic ma... Soil samples collected from a 25-year long-term fertilizer experiment carried out on the Earth-cumulic-Orthic Anthrosols in semi-humid farmland ecological system, were used to study the distribution of soil organic matters, total nitrogen, nitrate nitrogen, and ammoniate nitrogen in different grades of soil macro-aggregates in order to study the effects of long-term application of organic manures in combination with chemical fertilizers. It is showed that the percentage of mass of the soil macro-aggregates with long-term application of fertilizers with sizes of 5-2 mm is increased compared with that of the samples with no fertilizer. It is easier to form lager size soil macro-aggregates by the long-term application of organic manures in combination with chemical fertilizers. The contents of organic matters, total nitrogen and nitrate nitrogen are all higher after treatments with different combinations of fertilizers, while there is a little effect on the contents of ammoniate nitrogen. The contents of organic matters, total nitrogen in the grades of soil macro-aggregates from the plough layers of the treated farmland exhibited significant difference. Moreover, the contents of organic matters and total nitrogen in the soil macro-aggregates with the size of 1-0.25 mm is the highest in all treated soil samples. The contents of nitrate nitrogen in soil macro-aggregates increased with the increasing of soil macro-aggregate size except those applied with chemical fertilizer and lower amount of corn stover. The results of correlation analysis revealed that there exists a significantly positive correlation between the percentage of mass of soil macro-aggregates with the size of 5-2 mm and the contents of organic matters, total nitrogen and nitrate nitrogen in the soil samples. However, the correlation between the percentage of mass of soil macro-aggregates with the size of 1-0.25 rnm and the contents of total nitrogen and nitrate nitrogen is significantly negative.The study showed that the highest contributing rates of macro-aggregates fractions to soil fertility is from the soil macro-aggregates fraction with the size of 1-0.25 mm in most of the cases. 展开更多
关键词 Long-term fertilizer experiment organic matters Soil macro-aggregates NITROGEN
下载PDF
Impact of Integrated Nutrient, Crop Residue and Tillage Management on Soil Aggregates and Organic Matter Fractions in Semiarid Subtropical Soil under Soybean-Wheat Rotation
16
作者 Milkha S. Aulakh Ashok K. Garg Shrvan Kumar 《American Journal of Plant Sciences》 2013年第11期2148-2164,共17页
Various physical, chemical and biological soil properties in surface (0-5 cm) and subsurface (5-15 cm) soil were determined in a 4-year field experiment conducted at Punjab Agricultural University Ludhiana, India with... Various physical, chemical and biological soil properties in surface (0-5 cm) and subsurface (5-15 cm) soil were determined in a 4-year field experiment conducted at Punjab Agricultural University Ludhiana, India with sixteen treatments consisted of different combinations of fertilizer N (0, 20 and 25 kg N ha-1), P (0, 60 and 75 kg P2O5 ha-1), FYM (0 and 10 t&middot;ha-1) and wheat (Triticum aestivum L.) residue (WR) (0 and 6 t&middot;ha-1) applied to summer-grown soybean (Glycine max L.) and fertilizer N (0, 120 and 150 kg N ha-1), P (0, 60 and 75 kg P2O5 ha-1), and soybean residue (SR) (0 and 3 t&middot;ha-1) applied to winter-grown wheat crop continuously in both conventional tillage (CT) and conservation agriculture (CA), arranged in a split-split plot design with tillage system in main blocks, under irrigated subtropical conditions. Application of fertilizer N, P, FYM and crop residue (CR) significantly increased water stable aggregates and had profound effects in increasing the mean weight diameter as well as the formation of macro-aggregates, which were the highest in both surface (85%) and subsurface (81%) soil layers with application of 20 kg N + 60 kg P2O5 + 10 t FYM + 6 t WR ha-1 applied to soybean and 120 kg N + 60 kg P2O5 + 3 t SR ha-1 applied to wheat crop in CA, respectively, and were 83% and 77% in CT treatments after 2 years. Hence, better aggregation was found with 100% NP + FYM + CR, where macro-aggregates were greater than 50% of total soil mass. The same treatment also enhanced total organic C (TOC) from 3.8 g&middot;kg-1 in no-NP-FYM-CR control to 5.8 g&middot;kg-1 in surface layer and from 2.7 to 3.6 g&middot;kg-1 in subsurface layer after 2 years leading to the 41% and 39% higher TOC stocks over CT-Control in 0-15 cm soil layers of CT and CA, respectively. The changes in TOC stocks after 4 years were 52% and 59%. 展开更多
关键词 SOYBEAN Conservation Agriculture Water Stable aggregates organic Matter FRACTIONS
下载PDF
Studies on soil organic carbon of density-isolated fractions and water-stable aggregates under different types of land use on black soils
17
作者 Haibo LI Xiaozeng HAN +2 位作者 Feng WANG Yunfa QIAO Baoshan XING 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期266-267,共2页
关键词 土壤成分 有机碳 土地利用 黑土
下载PDF
Effect of Cultivation on Soil Organic Matter and Aggregate Stability 被引量:32
18
作者 A.WILLIAMS XINGBao-Shan P.VENEMAN 《Pedosphere》 SCIE CAS CSCD 2005年第2期255-262,共8页
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980 s showed that loss of soil organic matter (SOM) and soil aggregate stability was st... Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980 s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to a… 展开更多
关键词 aggregate stability CULTIVATION NMR particulate organic matter soil organic matter
下载PDF
Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw 被引量:9
19
作者 GUAN Song LIU Si-jia +4 位作者 LIU Ri-yue ZHANG Jin-jing REN Jun CAI Hong-guang LIN Xin-xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第7期1496-1507,共12页
Straw return has been strongly recommended in China,whereas applying biochar into soil is considered to provide more benefits for agriculture as well as the environment.In this study,a five-year(2011-2015) field exper... Straw return has been strongly recommended in China,whereas applying biochar into soil is considered to provide more benefits for agriculture as well as the environment.In this study,a five-year(2011-2015) field experiment was conducted to evaluate the effects of uncharred maize straw amendment(MS) and charred maize straw amendment(charred MS) on organic carbon(C) contents in bulk soil and in various soil aggregate-size and density fractions.Compared to no amendment(CK),the bulk soil organic C content significantly improved by 9.30% for MS and by 23.4% for charred MS.Uncharred and charred maize straw applied annually at a consistent equal-C dosage resulted in 19.7 and 58.2% organic C sequestration efficiency in soil,respectively,after the five years of the field experiment.The percentages of macroaggregates(>0.25 mm) and occluded microaggregates(0.25-0.053 mm) obviously increased by 7.73 and 18.1% for MS and by 10.7 and 19.6% for charred MS,respectively.Moreover,significant incremental increases of 19.4 and 35.0% in macroaggregate-associated organic C occurred in MS and charred MS,respectively.The occluded microaggregates associated organic C significantly increased by 21.7% for MS and 25.1% for charred MS.Mineral-associated organic C(<0.053 mm) inside the macroaggregates and the occluded microaggregates obviously improved by 24.7 and 33.3% for MS and by 18.4 and 44.9% for charred MS.Organic C associated with coarse particulate organic matter(POM) within the macroaggregates markedly increased by 65.1 and 41.2% for MS and charred MS,respectively.Charred MS resulted in a noteworthy increment of 50.4% for organic C associated with heavy POM inside the occluded microaggregates,whereas charred MS and MS observably improved organic C associated with heavy POM inside the free microaggregates by 36.3 and 20.0%,respectively.These results demonstrate that uncharred and charred maize straw amendments improve C sequestration by physically protecting more organic C in the macroaggregates and the occluded microaggregates.Compared to the feedstock straw amendment,charred maize straw amendment is more advantageous to C sequestration. 展开更多
关键词 SOIL organic carbon SOIL aggregates DENSITY FRACTIONATION maize STRAW biochar
下载PDF
Natural vegetation restoration of Liaodong oak(Quercus liaotungensis Koidz.) forests rapidly increased the content and ratio of inert carbon in soil macroaggregates 被引量:7
20
作者 SUN Lipeng HE Lirong +2 位作者 WANG Guoliang JING Hang LIU Guobin 《Journal of Arid Land》 SCIE CSCD 2019年第6期928-938,共11页
The lack of clarity of how natural vegetation restoration influences soil organic carbon(SOC) content and SOC components in soil aggregate fractions limits the understanding of SOC sequestration and turnover in forest... The lack of clarity of how natural vegetation restoration influences soil organic carbon(SOC) content and SOC components in soil aggregate fractions limits the understanding of SOC sequestration and turnover in forest ecosystems.The aim of this study was to explore how natural vegetation restoration affects the SOC content and ratio of SOC components in soil macroaggregates(>250 μm), microaggregates(53–250 μm), and silt and clay(<53 μm) fractions in 30-, 60-, 90-and 120-year-old Liaodong oak(Quercus liaotungensis Koidz.) forests, Shaanxi, China in 2015.And the associated effects of biomasses of leaf litter and different sizes of roots(0–0.5, 0.5–1.0, 1.0–2.0 and >2.0 mm diameter) on SOC components were studied too.Results showed that the contents of high activated carbon(HAC), activated carbon(AC) and inert carbon(IC) in the macroaggregates, microaggregates and silt and clay fractions increased with restoration ages.Moreover, IC content in the microaggregates in topsoil(0–20 cm) rapidly increased;peaking in the 90-year-old restored forest, and was 5.74 times higher than AC content.In deep soil(20–80 cm), IC content was 3.58 times that of AC content.Biomasses of 0.5–1.0 mm diameter roots and leaf litter affected the content of aggregate fractions in topsoil, while the biomass of >2.0 mm diameter roots affected the content of aggregate fractions in deep soil.Across the soil profiles, macroaggregates had the highest capacity for HAC sequestration.The effects of restoration ages on soil aggregate fractions and SOC content were less in deep soil than in topsoil.In conclusion, natural vegetation restoration of Liaodong oak forests improved the contents of SOC, especially IC within topsoil and deep soil.The influence of IC on aggregate stability was greater than the other SOC components, and the aggregate stability was significantly affected by the biomasses of litter, 0.5–1.0 mm diameter roots in topsoil and >2.0 mm diameter roots in deep soil.Natural vegetation restoration of Liaodong oak forests promoted SOC sequestration by soil macroaggregates. 展开更多
关键词 activated carbon leaf litter soil organic carbon soil aggregates silt and clay SHAANXI
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部