Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, an...Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes >2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes <0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(<0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term.展开更多
Pure organic materials with persistent and efficient room-temperature phosphorescence have recently aroused great research interest due to their vast potential in applications.One crucial design principle for such mat...Pure organic materials with persistent and efficient room-temperature phosphorescence have recently aroused great research interest due to their vast potential in applications.One crucial design principle for such materials is to suppress as much as possible the non-radiative decay of the triplet exciton while maintaining a moderate phosphorescent radiative rate.However,molecular engineering often exhibits similar regulation trends for the two processes.Here,we propose that the quantum interference caused by aggregation can be utilized to control the phosphorescent and non-radiative decay channels.We systematically analyze various constructive and destructive transition pathways in aggregates with different molecular packing types and establish clear relationships between the luminescence characters and the signs of the singlet and triplet excitonic couplings.It is shown that the decay channels can be flexibly switched on or off by regulating the packing type and excitonic couplings.Most importantly,an enhanced phosphorescent decay and a completely suppressed non-radiative decay can be simultaneously realized in the aggregate packed with inversion symmetry.This work lays the theoretical foundation for future experimental realization of quantum interference effects in phosphorescence.展开更多
Accumulation of organic contaminants on fullerene nanoparticles(nC(60)) may significantly affect the risks of C(60) in the environment.The objective of this study was to further understand how the interplay of n...Accumulation of organic contaminants on fullerene nanoparticles(nC(60)) may significantly affect the risks of C(60) in the environment.The objective of this study was to further understand how the interplay of nC(60) formation routes and humic acid modification affects contaminant adsorption of nC(60).Specifically,adsorption of 1,2,4,5-tetrachlorobenzene(a model nonionic,hydrophobic organic contaminant) on nC(60) was greatly affected by nC(60)formation route- the formation route significantly affected the aggregation properties of nC(60),thus affecting the available surface area and the extent of adsorption via the pore-filling mechanism.Depending on whether nC(60) was formed via the "top-down" route(i.e.,sonicating C(60) powder in aqueous solution) or "bottom-up" route(i.e.,phase transfer from an organic solvent) and the type of solvent involved(toluene versus tetrahydrofuran),modification of nC(60) with Suwannee River humic acid(SRHA) could either enhance or inhibit the adsorption affinity of nC(60).The net effect depended on the specific way in which SRHA interacted with C(60) monomers and/or C(60) aggregates of different sizes and morphology,which determined the relative importance of enhanced adsorption from SRHA modification via preventing C(60) aggregation and inhibited adsorption through blocking available adsorption sites.The findings further demonstrate the complex mechanisms controlling interactions between nC(60) and organic contaminants,and may have significant implications for the life-cycle analysis and risk assessment of C(60).展开更多
The nanotechnology industry advances rapidly,and at the vanguard are the promising silver nanoparticles(Ag NPs),which have diverse applications.These nanometer-sized particles have been shown to inhibit the ability ...The nanotechnology industry advances rapidly,and at the vanguard are the promising silver nanoparticles(Ag NPs),which have diverse applications.These nanometer-sized particles have been shown to inhibit the ability of bacteria to produce adenosine triphosphate(ATP),a molecule necessary for chemical energy transport in cells.The antimicrobial properties of Ag NPs(and Ag+)make them valued antibacterial展开更多
During the mass formation of aggregates of molecules in a gelatin film dyed with the mixture of chrysophenine and acridine yellow dyes, photo-reorientation, photo-disorientation, and photo-orientation of the molecules...During the mass formation of aggregates of molecules in a gelatin film dyed with the mixture of chrysophenine and acridine yellow dyes, photo-reorientation, photo-disorientation, and photo-orientation of the molecules are observed. Based on these observations, the photo-induction of granular aniso tropy may be realized.展开更多
基金funded by the Science & Technology Pillar Program of Gansu Province (1104FKCH162, 1204FKCH164, 1304FKCH102)the National Natural Science Foundation of China (31560170)
文摘Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes >2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes <0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(<0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term.
基金National Science Foundation of China,Grant/Award Numbers:22033006,21833006,22173074,22203068China Postdoctoral Science Foundation,Grant/Award Number:2021M702734。
文摘Pure organic materials with persistent and efficient room-temperature phosphorescence have recently aroused great research interest due to their vast potential in applications.One crucial design principle for such materials is to suppress as much as possible the non-radiative decay of the triplet exciton while maintaining a moderate phosphorescent radiative rate.However,molecular engineering often exhibits similar regulation trends for the two processes.Here,we propose that the quantum interference caused by aggregation can be utilized to control the phosphorescent and non-radiative decay channels.We systematically analyze various constructive and destructive transition pathways in aggregates with different molecular packing types and establish clear relationships between the luminescence characters and the signs of the singlet and triplet excitonic couplings.It is shown that the decay channels can be flexibly switched on or off by regulating the packing type and excitonic couplings.Most importantly,an enhanced phosphorescent decay and a completely suppressed non-radiative decay can be simultaneously realized in the aggregate packed with inversion symmetry.This work lays the theoretical foundation for future experimental realization of quantum interference effects in phosphorescence.
基金supported by the Ministry of Science and Technology(No.2014CB932001)the National Natural Science Foundation of China(Nos.21237002 and 21425729)
文摘Accumulation of organic contaminants on fullerene nanoparticles(nC(60)) may significantly affect the risks of C(60) in the environment.The objective of this study was to further understand how the interplay of nC(60) formation routes and humic acid modification affects contaminant adsorption of nC(60).Specifically,adsorption of 1,2,4,5-tetrachlorobenzene(a model nonionic,hydrophobic organic contaminant) on nC(60) was greatly affected by nC(60)formation route- the formation route significantly affected the aggregation properties of nC(60),thus affecting the available surface area and the extent of adsorption via the pore-filling mechanism.Depending on whether nC(60) was formed via the "top-down" route(i.e.,sonicating C(60) powder in aqueous solution) or "bottom-up" route(i.e.,phase transfer from an organic solvent) and the type of solvent involved(toluene versus tetrahydrofuran),modification of nC(60) with Suwannee River humic acid(SRHA) could either enhance or inhibit the adsorption affinity of nC(60).The net effect depended on the specific way in which SRHA interacted with C(60) monomers and/or C(60) aggregates of different sizes and morphology,which determined the relative importance of enhanced adsorption from SRHA modification via preventing C(60) aggregation and inhibited adsorption through blocking available adsorption sites.The findings further demonstrate the complex mechanisms controlling interactions between nC(60) and organic contaminants,and may have significant implications for the life-cycle analysis and risk assessment of C(60).
文摘The nanotechnology industry advances rapidly,and at the vanguard are the promising silver nanoparticles(Ag NPs),which have diverse applications.These nanometer-sized particles have been shown to inhibit the ability of bacteria to produce adenosine triphosphate(ATP),a molecule necessary for chemical energy transport in cells.The antimicrobial properties of Ag NPs(and Ag+)make them valued antibacterial
文摘During the mass formation of aggregates of molecules in a gelatin film dyed with the mixture of chrysophenine and acridine yellow dyes, photo-reorientation, photo-disorientation, and photo-orientation of the molecules are observed. Based on these observations, the photo-induction of granular aniso tropy may be realized.