Corrosion caused by sulfate-reducing prokaryotes(SRP)is an important cause of magnesium alloy anode failure in oil pipeline.In this study,the effects of Desulfovibrio sp.HQM3 on the corrosion behavior of AZ31B magnesi...Corrosion caused by sulfate-reducing prokaryotes(SRP)is an important cause of magnesium alloy anode failure in oil pipeline.In this study,the effects of Desulfovibrio sp.HQM3 on the corrosion behavior of AZ31B magnesium alloy anode in organic carbon sources with different contents in simulated tidal flat environment were analyzed using weight loss test,surface analysis and electrochemical analysis technologies.The results showed that the weight loss rate of coupons in low carbon sources contents(0%,1%,10%)was higher than that in 100%carbon sources.Electrochemical analyses showed that the corrosion current density(J_(corr))under low carbon sources contents was larger,while the charge transfer resistance(R_(ct))was lower,leading to a higher corrosion rate compared to those under 100%carbon sources content.Observations from scanning electron microscopy(SEM)and confocal laser scanning microscopy(CLSM)revealed more severe pitting corrosion on the alloy surface in the absence of carbon sources.In addition,a large number of nanowires were observed between bacteria on the alloy surface using SEM.Combined with thermodynamic calculations,it was demonstrated that the corrosion of coupons by Desulfovibrio sp.HQM3 in the absence of carbon sources was achieved through extracellular electron transfer.展开更多
Stable carbon isotope ratios have been used to study the sources of particulate organic carbon(POC) in the Amazon River and its tributaries, and to examine the transport of the riverine POC intothe oceanic environment...Stable carbon isotope ratios have been used to study the sources of particulate organic carbon(POC) in the Amazon River and its tributaries, and to examine the transport of the riverine POC intothe oceanic environment. POC in the upper reaches of the Amazon River has more positive δC values(--24.5‰ to -- 28.0‰) than that in the middle and lower reaches (--27.9‰ to -- 30.1‰). TheδC of POC from the tributaries is generally more negative than that observed in the Amazon mainchannel. This δC datum shows that the POC in the Amazon main channel is predominantly of terres-trial origin rather than a result of in situ production. A large range of δC values (--17.5‰ to -28.4‰) is observed in the Amazon Estuary and plume. and is considered as the result of the mixing展开更多
Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fund...Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fundamental for elucidating the role of mangroves in the global carbon budget.In particular,understanding the past changes in the OCAR in mangrove sediments is vital for predicting the future role of mangroves in the rapidly changing environment.In this study,three dated sediment cores from interior and fringe of mangroves in the Yingluo Bay,China,were used to reconstruct the spatiotemporal variations of the calculated OCAR since 1900 in this area.The increasing OCAR in the mangrove interior was attributed to mangrove flourishment induced by climate change characterized by the rising temperature.However,in the mangrove fringe,the strengthening hydrodynamic conditions under the sea level rise were responsible for the decreasing OCAR,particularly after the1940 s.Furthermore,the duration of inundation by seawater was the primary factors controlling the spatial variability of the OCAR from the mangrove fringe to interior,while the strengthened hydrodynamic conditions after the 1940 s broke this original pattern.展开更多
A study was conducted to quantify wintertime contributions of source types to carbonaceous PM2.5 at four urban sites in the Las Vegas Valley, one of the most rapidly growing urban areas in the southwestern United Stat...A study was conducted to quantify wintertime contributions of source types to carbonaceous PM2.5 at four urban sites in the Las Vegas Valley, one of the most rapidly growing urban areas in the southwestern United States. Twenty-four hour average ambient samples were collected for mass, ions, elements, organic carbon (OC), elemental carbon (EC), and trace organic markers analysis. Additional measurements were made to determine diurnal patterns in light-absorbing black carbon (BC) as a marker for combustion sources. Carbonaceous PM sources of on-road gasoline vehicles, on-road diesel vehicles, and off-road diesel engines were characterized with their chemical profiles, as well as fuel-based emission factors, using an In-Plume Sampling System. The Effective Variance Chemical Mass Balance (EV-CMB) source apportionment model was applied to the ambient samples collected, using source profiles developed in this study as well as profiles from other relevant studies. Four main sources contributed to PM2.5 carbon within the Las Vegas Valley: (1) paved road dust, (2) on-road gasoline vehicles, (3) residential wood combustion, and (4) on-road diesel vehicles. CMB estimated that on-road mixed fleet gasoline vehicles are the largest source for OC and EC at all the sites. The contribution of paved road dust to both OC and EC was 5-10% at the four sites. On-road diesel vehicles contribute 22% of the OC and 34% of the EC at a site near the city center, which is located immediately downwind of a major freeway. Residential wood combustion is a more important source than on-road diesel vehicles for two residential neighborhood sites, These results are consistent with our conceptual model, and the research methodology may be applied to studying other urban areas.展开更多
基金Project(42076043) supported by the National Natural Science Foundation of ChinaProject(ZR2023ZD31) supported by the Major Basic Research Project of Natural Science Foundation of Shandong Province,ChinaProject(2023VEA0007) supported by the Chinese Academy of Sciences President’s International Fellowship Initiative。
文摘Corrosion caused by sulfate-reducing prokaryotes(SRP)is an important cause of magnesium alloy anode failure in oil pipeline.In this study,the effects of Desulfovibrio sp.HQM3 on the corrosion behavior of AZ31B magnesium alloy anode in organic carbon sources with different contents in simulated tidal flat environment were analyzed using weight loss test,surface analysis and electrochemical analysis technologies.The results showed that the weight loss rate of coupons in low carbon sources contents(0%,1%,10%)was higher than that in 100%carbon sources.Electrochemical analyses showed that the corrosion current density(J_(corr))under low carbon sources contents was larger,while the charge transfer resistance(R_(ct))was lower,leading to a higher corrosion rate compared to those under 100%carbon sources content.Observations from scanning electron microscopy(SEM)and confocal laser scanning microscopy(CLSM)revealed more severe pitting corrosion on the alloy surface in the absence of carbon sources.In addition,a large number of nanowires were observed between bacteria on the alloy surface using SEM.Combined with thermodynamic calculations,it was demonstrated that the corrosion of coupons by Desulfovibrio sp.HQM3 in the absence of carbon sources was achieved through extracellular electron transfer.
文摘Stable carbon isotope ratios have been used to study the sources of particulate organic carbon(POC) in the Amazon River and its tributaries, and to examine the transport of the riverine POC intothe oceanic environment. POC in the upper reaches of the Amazon River has more positive δC values(--24.5‰ to -- 28.0‰) than that in the middle and lower reaches (--27.9‰ to -- 30.1‰). TheδC of POC from the tributaries is generally more negative than that observed in the Amazon mainchannel. This δC datum shows that the POC in the Amazon main channel is predominantly of terres-trial origin rather than a result of in situ production. A large range of δC values (--17.5‰ to -28.4‰) is observed in the Amazon Estuary and plume. and is considered as the result of the mixing
基金The National Natural Science Foundation of China under contract Nos 41976068 and 41576061。
文摘Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fundamental for elucidating the role of mangroves in the global carbon budget.In particular,understanding the past changes in the OCAR in mangrove sediments is vital for predicting the future role of mangroves in the rapidly changing environment.In this study,three dated sediment cores from interior and fringe of mangroves in the Yingluo Bay,China,were used to reconstruct the spatiotemporal variations of the calculated OCAR since 1900 in this area.The increasing OCAR in the mangrove interior was attributed to mangrove flourishment induced by climate change characterized by the rising temperature.However,in the mangrove fringe,the strengthening hydrodynamic conditions under the sea level rise were responsible for the decreasing OCAR,particularly after the1940 s.Furthermore,the duration of inundation by seawater was the primary factors controlling the spatial variability of the OCAR from the mangrove fringe to interior,while the strengthened hydrodynamic conditions after the 1940 s broke this original pattern.
基金funded by the Clark County Department of Air Quality and Environmental Management
文摘A study was conducted to quantify wintertime contributions of source types to carbonaceous PM2.5 at four urban sites in the Las Vegas Valley, one of the most rapidly growing urban areas in the southwestern United States. Twenty-four hour average ambient samples were collected for mass, ions, elements, organic carbon (OC), elemental carbon (EC), and trace organic markers analysis. Additional measurements were made to determine diurnal patterns in light-absorbing black carbon (BC) as a marker for combustion sources. Carbonaceous PM sources of on-road gasoline vehicles, on-road diesel vehicles, and off-road diesel engines were characterized with their chemical profiles, as well as fuel-based emission factors, using an In-Plume Sampling System. The Effective Variance Chemical Mass Balance (EV-CMB) source apportionment model was applied to the ambient samples collected, using source profiles developed in this study as well as profiles from other relevant studies. Four main sources contributed to PM2.5 carbon within the Las Vegas Valley: (1) paved road dust, (2) on-road gasoline vehicles, (3) residential wood combustion, and (4) on-road diesel vehicles. CMB estimated that on-road mixed fleet gasoline vehicles are the largest source for OC and EC at all the sites. The contribution of paved road dust to both OC and EC was 5-10% at the four sites. On-road diesel vehicles contribute 22% of the OC and 34% of the EC at a site near the city center, which is located immediately downwind of a major freeway. Residential wood combustion is a more important source than on-road diesel vehicles for two residential neighborhood sites, These results are consistent with our conceptual model, and the research methodology may be applied to studying other urban areas.