Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface mo...Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.展开更多
To measure the pulsed neutron of a pulsed fission source, an organic scintillation fiber (OSF) detector with separation structure has been designed. The proposed detector employs UV optical fibers as the light guide...To measure the pulsed neutron of a pulsed fission source, an organic scintillation fiber (OSF) detector with separation structure has been designed. The proposed detector employs UV optical fibers as the light guide, and the sensitive region of the detector is composed of a linear array of OSFs, which are individually connected to the optical fibers. The other end of the light guide is coupled to a photomultiplier tube. The key properties of the device including the energy response, time response, neutron sensitivity, and radiation effect of the optical fiber were studied. The detector has a relatively high n/γ sensitivity ratio, which increases as the diameter of the OSF decreases, and ratios greater than 10 could be achieved when the diameter of the OSF is less than 0.3 nun. The sensitivity of the detector to neutrons ranges from 10-14 to 10-20 C cm2/n, and has a response time of 3 ns (FWHM). The proposed detector is also highly flexible. For instance, the probe can be set close to the source, while the PMT can be placed far away from radiation, allowing easy shielding. Due to these characteristics, pulsed fission neutrons in the vicinity of the source can be accurately measured.展开更多
基金Funded by the Key R&D Program of the Science and Technology Department of Hubei Province(No.2022BCE008)。
文摘Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.
文摘To measure the pulsed neutron of a pulsed fission source, an organic scintillation fiber (OSF) detector with separation structure has been designed. The proposed detector employs UV optical fibers as the light guide, and the sensitive region of the detector is composed of a linear array of OSFs, which are individually connected to the optical fibers. The other end of the light guide is coupled to a photomultiplier tube. The key properties of the device including the energy response, time response, neutron sensitivity, and radiation effect of the optical fiber were studied. The detector has a relatively high n/γ sensitivity ratio, which increases as the diameter of the OSF decreases, and ratios greater than 10 could be achieved when the diameter of the OSF is less than 0.3 nun. The sensitivity of the detector to neutrons ranges from 10-14 to 10-20 C cm2/n, and has a response time of 3 ns (FWHM). The proposed detector is also highly flexible. For instance, the probe can be set close to the source, while the PMT can be placed far away from radiation, allowing easy shielding. Due to these characteristics, pulsed fission neutrons in the vicinity of the source can be accurately measured.