Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at th...Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.展开更多
Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concern...Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.展开更多
The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH...The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given.展开更多
Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could ...Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could raise some problems like high back pressure and low column efficiency in the HPLC separation. In this work, UiO-66 capable of separating xylenes was supported effectively on the surface of the monodisperse spherical silica microspheres by one-pot method. The hybridization of Ui O-66 and silica microspheres(termed UiO-66@SiO2 shell–core composite) was prepared by stirring the suspension of the precursors of Ui O-66 and\\COOH terminated silica in the N,N-dimethylformamide with heating. The shell–core composite material UiO66@SiO2 was characterized by SEM, TEM, PXRD and FTIR. Then, it was used as a packing material for the chromatographic separation of xylene isomers. Xylene isomers including o-xylene, m-xylene and p-xylene were efficiently separated on the column with high resolution and good reproducibility. Moreover, the Ui O-66@SiO2 shell–core composites packed column still remained reverse shape selectivity as Ui O-66 possessed, and the retention of xylenes was probably ascribed to the hydrophobic effect between analytes and the aromatic rings of the Ui O-66 shell. The Ui O-66@SiO2 shell–core composites obtained in this study have some potential for the separation of structural isomers in HPLC.展开更多
In order to investigate the adsorption mechanism of trace metals to surficial sediments (SSs), a selective extraction procedure was improved in the present work. The selective extraction procedure has been proved to...In order to investigate the adsorption mechanism of trace metals to surficial sediments (SSs), a selective extraction procedure was improved in the present work. The selective extraction procedure has been proved to selectively remove and separate Fe, Mn oxides and organic materials (OMs) in the non-residual fraction from the SSs collected in Songhua River, China. After screening different kinds of conventional extractants of Fe and Mn oxides and OMs used for separation of heavy metals in the soils and sediments, NH2OH .HCl (0.1 mol/L) + HNO3 (0.1 mol/L), (NH4)2C2O4 (0.2 mol/L) + H2C2O4 (pH 3.0), and 30% of H2O2 were respectively applied to selectively extract Mn oxides, Fe/Mn oxides and OMs. After the extraction treatments, the target components were removed with extraction efficiencies between 86.09%--3.36% for the hydroxylamine hydrochloride treatment, 80.63%- 101.09% for the oxalate solution extraction, and 94.76%-102.83% for the hydrogen peroxide digestion, respectively. The results indicate that this selective extraction technology was effective for the extraction and separation ofFe, Mn oxides and OMs in the SSs, and important for further mechanism study of trace metal adsorption onto SSs.展开更多
Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good effic...Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good efficiency remain unavailable. With the objective of developing an advanced method with shorter runtimes, a simple, precise, accurate stability-indicating LC method was developed for the determination of purity of Linezolid drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. This method is capable of separating all the related substances of Linezolid along with the chiral impurity. This method can also be used for the estimation of assay of Linezolid in drug substance as well as in drug product. The method was developed using Chiralpak IA (250 mm 4.6 mm, 5 mm) column. A mixture of acetonitrile, ethanol, n-butyl amine and trifluoro acetic acid in 96:4:0.10:0.16 (v/v/v/v) ratio was used as a mobile phase. The eluted compounds were monitored at 254 nm. Linezolid was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantification, precision, linearity, accuracy, robustness and system suitability.展开更多
Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in...Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in TFC membranes is the main problem.In this work,covalent organic frameworks(COFs,TpPa-1)with rich ANHA groups were incorporated into polyamide(PA)segment via in situ interfacial polymerization to prepare defect-free TFC membranes for CO_(2)/N_(2)separation.The formed covalent bonds between TpPa-1 and PA strengthen the interaction between nanofillers and polymers,thereby enhancing compatibility.Besides,the incorporated COFs disturb the rigid structure of the PA layer,and provide fast CO_(2)transfer channels.The incorporated COFs also increase the content of effective carriers,which enhances the CO_(2)facilitated transport.Consequently,in CO_(2)/N_(2)mixed gas separation test,the optimal TFC(TpPa_(0.025)-PIP-TMC/m PSf)membrane exhibits high CO_(2)permeance of 854 GPU and high CO_(2)/N_(2)selectivity of 148 at 0.15 MPa,CO_(2)permeance of 456 GPU(gas permeation unit)and CO_(2)/N_(2)selectivity of 92 at 0.5 MPa.In addition,the Tp Pa_(0.025)-PIP-TMC/m PSf membrane also achieves high permselectivty in CO_(2)/CH_(4)mixed gas separation test.Finally,the optimal TFC membrane showes good stability in the simulated flue gas test,revealing the application potential for CO_(2)capture from flue gas.展开更多
A magnetic metal organic framework(MMOF) was synthesized and used to separate Sr^2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of st...A magnetic metal organic framework(MMOF) was synthesized and used to separate Sr^2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr^2+ in aqueous solution indicated that the adsorption of Sr^2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr^2+ conformed to the Freundlich isotherm model(R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide (90)Sr.展开更多
Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH...Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.展开更多
Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techni...Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.展开更多
The reverse osmosis (RO) separation of aqueous organic solutions, such as alcohols, amines, aldehydes, acids, ketones, and esters etc., by PAA (polyacrylic acid)/PSF (polysulfone) composite membrane has been studied. ...The reverse osmosis (RO) separation of aqueous organic solutions, such as alcohols, amines, aldehydes, acids, ketones, and esters etc., by PAA (polyacrylic acid)/PSF (polysulfone) composite membrane has been studied. It was found that the separation results for aliphatic alcohols, amines and aldehydes are satisfactory, the solute rejection (R-a) and the volume fluxes of solutions (J(V)) for 1000 ppm ethanol, ethylamine and ethyl aldehyde are 66.2%, 61.0%, 84.0% and 0.90 x 10(-6), 0.35 x 10(-6), 0.40 X 10(-6) m(3)/m(2) . s, respectively, at 5.0 MPa and 30 degrees C. R-a increased with increasing molecular weights of alcohols, amines and aldehydes, and the R-a for n-amyl alcohol, n-butylamine and n-butyl aldehyde reached 94.3%, 88.6% and 96.0%, respectively. Satisfactory separation results (R-a > 70%) for ketones, esters, phenols and polyols have been obtained with the PAA/PSF composite membrane. The effect of operating pressure on the properties of reverse osmosis has also been investigated. Analysis of experimental data with Spiegler-Kedem's transport model has been carried out and the membrane constants such as reflection coefficient sigma, solute and hydraulic permeabilities omega and L-p for several organic solutes have been obtained.展开更多
Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown th...Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown that metal-organic frameworks(MOFs) are of good potential for D_(2)/H_(2) separation application. In this work, a high-throughput computational screening of 12020 computation-ready experimental MOFs is carried out to determine the best MOFs for hydrogen isotope separation application. Meanwhile, the detailed structure-performance correlation is systematically investigated with the aid of machine learning. The results indicate that the ideal D_(2)/H_(2) adsorption selectivity calculated based on Henry coefficient is strongly correlated with the 1/ΔAD feature descriptor;that is, inverse of the adsorbility difference of the two adsorbates. Meanwhile, the machine learning(ML) results show that the prediction accuracy of all the four ML methods is significantly improved after the addition of this feature descriptor. In addition, the ML results based on extreme gradient boosting model also revealed that the 1/ΔAD descriptor has the highest relative importance compared to other commonly-used descriptors. To further explore the effect of hydrogen isotope separation in binary mixture, 1548 MOFs with ideal adsorption selectivity greater than 1.5 are simulated at equimolar conditions. The structure-performance relationship shows that high adsorption selectivity MOFs generally have smaller pore size(0.3-0.5 nm) and lower surface area. Among the top 200 performers, the materials mainly have the sql, pcu, cds, hxl, and ins topologies.Finally, three MOFs with high D_(2)/H_(2) selectivity and good D_(2) uptake are identified as the best candidates,of all which had one-dimensional channel pore. The findings obtained in this work may be helpful for the identification of potentially promising candidates for hydrogen isotope separation.展开更多
Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 h...Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 have the similar optical bandgap and different absorption coefficients.The corresponding binary SMPVs exhibit different short circuit current density(/sc)(20.38 vs.23.24 mA cm^(-2)),and fill factor(FF)(70.77% vs.67.21%).A 14.46% power conversion efficiency(PCE) is acquired in ternary SMPVs with 30 wt% Y6,companied with a JSC of 24.17 mA cm^(-2) a FF of 68.78% and an open circuit voltage(Voc) of 0.87 V.The improvement on PCE of ternary SMPVs should originate from the well trade-off between phase separation and photon harvesting of ternary active layers by incorporating 30 wt% Y6 in acceptors.This work may deliver insight onto the improved performance of SMPVs by superposing the superiorities of binary SMPVs with similar optical bandgap acceptors into one ternary cell.展开更多
The Environmental program of the Cernavoda NPP (nuclear power plant) is based on the analysis of environmental samples: airborne, TLDs (thermoluminescence dosimeters), water, deposition, soil, grass, sediment, fi...The Environmental program of the Cernavoda NPP (nuclear power plant) is based on the analysis of environmental samples: airborne, TLDs (thermoluminescence dosimeters), water, deposition, soil, grass, sediment, fish, milk, meat, eggs, grains, fruits and vegetables, using determination of 3H and 14C, gross alpha/beta and gamma spectrometry measurement techniques. This Program is a legal constraint for nuclear utilities and it is approved and supervised by the regulatory body. Besides, the actual legal requirements, Cernavoda NPP participates in a CANDU (Canadian Deuterium Uranium) Owners Group Project (COG HS & E-304) in order to implement the new standard CAN-CSA 288.1-08 for derived emission limits using results of measurements for OBT (organically bound tritium) concentrations in plant and animal products. The method for determination of 3H and 14C in organic samples after separation through non-catalytic combustion by flame oxidation is performed in Sample Oxidizer 307 equipment. Average values for total tritium activity concentration in fish samples of 21 ± 2 Bq/kg fresh weight were determined. Results for 14C have an average value of 327 ± 26 Bq/kg-C in fish from Danube-River and 315 ± 25 Bq/kg-C in fish from lakes. The average values for 14C activity concentration in vegetables samples from Cernavoda and Seimeni areas are about 338 ± 27 Bq/kg-C.展开更多
The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid wi...The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid with a high concentration of inorganic pollutants in the processing of petroleum, coal, and natural gas is becoming more serious. In this study, the high-speed self-rotation and flipping of particles in a three- dimensional cyclonic turbulent field was examined using a synchronous high-speed camera technique; the self-rotation speed was found to reach 2000-6000 rad.s 1. Based on these findings, a cyclonic gas- stripping method for the removal of organic matter from the pores of particles was invented. A techno- logical process was developed to recover organic matter from waste liquid by cyclonic gas stripping and classifying inorganic particles by means of airflow acceleration classification. A demonstration device was built in Sinopec's first ebullated-bed hydro-treatment unit for residual oil. Compared with the T-STAR fixed-bed gas-stripping technology designed in the United States, the maximum liquid-removal effi- ciency of the catalyst particles in this new process is 44.9% greater at the same temperature, and the time required to realize 95% liquid-removal efficiency is decreased from 1956.5 to 8.4 s. In addition, we achieved the classification and reuse of the catalyst particles contained in waste liquid according to their activity. A proposal to use this new technology was put forward regarding the control of organic waste liquid and the classification recovery of inorganic particles in an ebullated-bed hydro-treatment process for residual oil with a processing capacity of 2×106 t.a^1. It is estimated that the use of this new tech- nology will lead to the recovery of 3100 t.a 1 of diesel fuel and 647 t.a^1 of high-activity catalyst; in addi- tion, it will reduce the consumption of fresh catalyst by 518 t.a^1. The direct economic benefits of this process will be as high as 37.28 million CNY per year.展开更多
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca...Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.展开更多
The use of polar organic solvents for the separations of rare earth elements (Ⅲ) is effective especially for their extensive separations despite the solubility limitations. The study shows that polyacrylate anion exc...The use of polar organic solvents for the separations of rare earth elements (Ⅲ) is effective especially for their extensive separations despite the solubility limitations. The study shows that polyacrylate anion exchangers, particularly the weakly basic, gel anion exchanger Amberlite IRA 68, can be applied to the separation of rare earth complexes with EDTA in H_2O-methanol and H_2O-ethanol systems. In most cases the determined distribution coefficients of Ln^(3+) complexes with EDTA in mixed media like water-methanol on polyacrylate anion exchangers are larger than those in pure water (media.)展开更多
The antidepressant trimipramine(Tri) enantiomers were successfully separated by capillary electrophoresis(CE) coupled with electrochemiluminescence(ECL) detection in aqueous-organic media. A dual cyclodextrin(C...The antidepressant trimipramine(Tri) enantiomers were successfully separated by capillary electrophoresis(CE) coupled with electrochemiluminescence(ECL) detection in aqueous-organic media. A dual cyclodextrin(CD) system combining β-CD and hydroxypropyl-β-cyclodextrin(HP-β-CD) was used as chiral selector. Acetonitrile(ACN) was added to the running buffer to improve the separation efficiency, detection sensitivity and repeatability. The method was also successfully applied to the chiral separation of Tri in spiked human urine sample.展开更多
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe...To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00213920,NRF-2021R1A4A1031761).
文摘Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.
基金supported by the National Key Research and Development Program of China(No.2022YFA1504100)the National Natural Science Foundation of China(Nos.22005215,22279089,and 22178251).
文摘Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.
基金supported from the Natural Science Foundation of China (Grant Nos. 21771012, 21601008 and 21576006)the National Natural Science Fund for Innovative Research Groups (Grant No. 51621003)the China Postdoctoral Science Foundation (Grant No. 2016M600879)
文摘The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given.
基金Supported by the National Natural Science Foundation of China(21722609,21776240)Zhejiang Provincial Natural Science Foundation of China(LR17B060001)
文摘Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could raise some problems like high back pressure and low column efficiency in the HPLC separation. In this work, UiO-66 capable of separating xylenes was supported effectively on the surface of the monodisperse spherical silica microspheres by one-pot method. The hybridization of Ui O-66 and silica microspheres(termed UiO-66@SiO2 shell–core composite) was prepared by stirring the suspension of the precursors of Ui O-66 and\\COOH terminated silica in the N,N-dimethylformamide with heating. The shell–core composite material UiO66@SiO2 was characterized by SEM, TEM, PXRD and FTIR. Then, it was used as a packing material for the chromatographic separation of xylene isomers. Xylene isomers including o-xylene, m-xylene and p-xylene were efficiently separated on the column with high resolution and good reproducibility. Moreover, the Ui O-66@SiO2 shell–core composites packed column still remained reverse shape selectivity as Ui O-66 possessed, and the retention of xylenes was probably ascribed to the hydrophobic effect between analytes and the aromatic rings of the Ui O-66 shell. The Ui O-66@SiO2 shell–core composites obtained in this study have some potential for the separation of structural isomers in HPLC.
基金The National Basic Research Program (973) of China (No. 2004CB3418501)
文摘In order to investigate the adsorption mechanism of trace metals to surficial sediments (SSs), a selective extraction procedure was improved in the present work. The selective extraction procedure has been proved to selectively remove and separate Fe, Mn oxides and organic materials (OMs) in the non-residual fraction from the SSs collected in Songhua River, China. After screening different kinds of conventional extractants of Fe and Mn oxides and OMs used for separation of heavy metals in the soils and sediments, NH2OH .HCl (0.1 mol/L) + HNO3 (0.1 mol/L), (NH4)2C2O4 (0.2 mol/L) + H2C2O4 (pH 3.0), and 30% of H2O2 were respectively applied to selectively extract Mn oxides, Fe/Mn oxides and OMs. After the extraction treatments, the target components were removed with extraction efficiencies between 86.09%--3.36% for the hydroxylamine hydrochloride treatment, 80.63%- 101.09% for the oxalate solution extraction, and 94.76%-102.83% for the hydrogen peroxide digestion, respectively. The results indicate that this selective extraction technology was effective for the extraction and separation ofFe, Mn oxides and OMs in the SSs, and important for further mechanism study of trace metal adsorption onto SSs.
文摘Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good efficiency remain unavailable. With the objective of developing an advanced method with shorter runtimes, a simple, precise, accurate stability-indicating LC method was developed for the determination of purity of Linezolid drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. This method is capable of separating all the related substances of Linezolid along with the chiral impurity. This method can also be used for the estimation of assay of Linezolid in drug substance as well as in drug product. The method was developed using Chiralpak IA (250 mm 4.6 mm, 5 mm) column. A mixture of acetonitrile, ethanol, n-butyl amine and trifluoro acetic acid in 96:4:0.10:0.16 (v/v/v/v) ratio was used as a mobile phase. The eluted compounds were monitored at 254 nm. Linezolid was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantification, precision, linearity, accuracy, robustness and system suitability.
基金supported by the National Key Research&Development Program of China(2017YFB0603400)the National Natural Science Foundation of China(21938007)。
文摘Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in TFC membranes is the main problem.In this work,covalent organic frameworks(COFs,TpPa-1)with rich ANHA groups were incorporated into polyamide(PA)segment via in situ interfacial polymerization to prepare defect-free TFC membranes for CO_(2)/N_(2)separation.The formed covalent bonds between TpPa-1 and PA strengthen the interaction between nanofillers and polymers,thereby enhancing compatibility.Besides,the incorporated COFs disturb the rigid structure of the PA layer,and provide fast CO_(2)transfer channels.The incorporated COFs also increase the content of effective carriers,which enhances the CO_(2)facilitated transport.Consequently,in CO_(2)/N_(2)mixed gas separation test,the optimal TFC(TpPa_(0.025)-PIP-TMC/m PSf)membrane exhibits high CO_(2)permeance of 854 GPU and high CO_(2)/N_(2)selectivity of 148 at 0.15 MPa,CO_(2)permeance of 456 GPU(gas permeation unit)and CO_(2)/N_(2)selectivity of 92 at 0.5 MPa.In addition,the Tp Pa_(0.025)-PIP-TMC/m PSf membrane also achieves high permselectivty in CO_(2)/CH_(4)mixed gas separation test.Finally,the optimal TFC membrane showes good stability in the simulated flue gas test,revealing the application potential for CO_(2)capture from flue gas.
基金financially supported by the National Natural Science Foundation of China[Grant No.20477058]by the Chinese Ministry of Science and Technology[Grant No.2014YF211000]
文摘A magnetic metal organic framework(MMOF) was synthesized and used to separate Sr^2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr^2+ in aqueous solution indicated that the adsorption of Sr^2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr^2+ conformed to the Freundlich isotherm model(R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide (90)Sr.
基金Supported by National Natural Science Foundation of China(No.21136007,No.51302184)the National Research Fund for Fundamental Key Projects(No.2014CB260402)
文摘Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.
基金TheNationalNaturalScienceFoundationofChina (No .2 9836 16 0 )
文摘Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.
文摘The reverse osmosis (RO) separation of aqueous organic solutions, such as alcohols, amines, aldehydes, acids, ketones, and esters etc., by PAA (polyacrylic acid)/PSF (polysulfone) composite membrane has been studied. It was found that the separation results for aliphatic alcohols, amines and aldehydes are satisfactory, the solute rejection (R-a) and the volume fluxes of solutions (J(V)) for 1000 ppm ethanol, ethylamine and ethyl aldehyde are 66.2%, 61.0%, 84.0% and 0.90 x 10(-6), 0.35 x 10(-6), 0.40 X 10(-6) m(3)/m(2) . s, respectively, at 5.0 MPa and 30 degrees C. R-a increased with increasing molecular weights of alcohols, amines and aldehydes, and the R-a for n-amyl alcohol, n-butylamine and n-butyl aldehyde reached 94.3%, 88.6% and 96.0%, respectively. Satisfactory separation results (R-a > 70%) for ketones, esters, phenols and polyols have been obtained with the PAA/PSF composite membrane. The effect of operating pressure on the properties of reverse osmosis has also been investigated. Analysis of experimental data with Spiegler-Kedem's transport model has been carried out and the membrane constants such as reflection coefficient sigma, solute and hydraulic permeabilities omega and L-p for several organic solutes have been obtained.
基金supported by the National Natural Science Foundation of China (22078004)the Research Development Fund from Xi’an Jiaotong-Liverpool University (RDF-16-02-03 and RDF15-01-23)key program special fund (KSF-E-03)。
文摘Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown that metal-organic frameworks(MOFs) are of good potential for D_(2)/H_(2) separation application. In this work, a high-throughput computational screening of 12020 computation-ready experimental MOFs is carried out to determine the best MOFs for hydrogen isotope separation application. Meanwhile, the detailed structure-performance correlation is systematically investigated with the aid of machine learning. The results indicate that the ideal D_(2)/H_(2) adsorption selectivity calculated based on Henry coefficient is strongly correlated with the 1/ΔAD feature descriptor;that is, inverse of the adsorbility difference of the two adsorbates. Meanwhile, the machine learning(ML) results show that the prediction accuracy of all the four ML methods is significantly improved after the addition of this feature descriptor. In addition, the ML results based on extreme gradient boosting model also revealed that the 1/ΔAD descriptor has the highest relative importance compared to other commonly-used descriptors. To further explore the effect of hydrogen isotope separation in binary mixture, 1548 MOFs with ideal adsorption selectivity greater than 1.5 are simulated at equimolar conditions. The structure-performance relationship shows that high adsorption selectivity MOFs generally have smaller pore size(0.3-0.5 nm) and lower surface area. Among the top 200 performers, the materials mainly have the sql, pcu, cds, hxl, and ins topologies.Finally, three MOFs with high D_(2)/H_(2) selectivity and good D_(2) uptake are identified as the best candidates,of all which had one-dimensional channel pore. The findings obtained in this work may be helpful for the identification of potentially promising candidates for hydrogen isotope separation.
基金the financial supporting from the NSFC(61975006,61675017)NSFRPSI(Y72Z090Q10)+3 种基金the NSFCQ(cstc2019jcyj-msxm X0400)the NYTPP(R52A199Z11)the YIPACAS(E0296104)the BNSF(4192049)。
文摘Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 have the similar optical bandgap and different absorption coefficients.The corresponding binary SMPVs exhibit different short circuit current density(/sc)(20.38 vs.23.24 mA cm^(-2)),and fill factor(FF)(70.77% vs.67.21%).A 14.46% power conversion efficiency(PCE) is acquired in ternary SMPVs with 30 wt% Y6,companied with a JSC of 24.17 mA cm^(-2) a FF of 68.78% and an open circuit voltage(Voc) of 0.87 V.The improvement on PCE of ternary SMPVs should originate from the well trade-off between phase separation and photon harvesting of ternary active layers by incorporating 30 wt% Y6 in acceptors.This work may deliver insight onto the improved performance of SMPVs by superposing the superiorities of binary SMPVs with similar optical bandgap acceptors into one ternary cell.
文摘The Environmental program of the Cernavoda NPP (nuclear power plant) is based on the analysis of environmental samples: airborne, TLDs (thermoluminescence dosimeters), water, deposition, soil, grass, sediment, fish, milk, meat, eggs, grains, fruits and vegetables, using determination of 3H and 14C, gross alpha/beta and gamma spectrometry measurement techniques. This Program is a legal constraint for nuclear utilities and it is approved and supervised by the regulatory body. Besides, the actual legal requirements, Cernavoda NPP participates in a CANDU (Canadian Deuterium Uranium) Owners Group Project (COG HS & E-304) in order to implement the new standard CAN-CSA 288.1-08 for derived emission limits using results of measurements for OBT (organically bound tritium) concentrations in plant and animal products. The method for determination of 3H and 14C in organic samples after separation through non-catalytic combustion by flame oxidation is performed in Sample Oxidizer 307 equipment. Average values for total tritium activity concentration in fish samples of 21 ± 2 Bq/kg fresh weight were determined. Results for 14C have an average value of 327 ± 26 Bq/kg-C in fish from Danube-River and 315 ± 25 Bq/kg-C in fish from lakes. The average values for 14C activity concentration in vegetables samples from Cernavoda and Seimeni areas are about 338 ± 27 Bq/kg-C.
基金This work was supported by the sponsorship of the National Science Foundation for Distinguished Young Scholars of China (51125032), the sponsorship of the National Key Research and Development Program of China (2016YFC0204500), and the National Natural Science Foundation of China (51608203).
文摘The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid with a high concentration of inorganic pollutants in the processing of petroleum, coal, and natural gas is becoming more serious. In this study, the high-speed self-rotation and flipping of particles in a three- dimensional cyclonic turbulent field was examined using a synchronous high-speed camera technique; the self-rotation speed was found to reach 2000-6000 rad.s 1. Based on these findings, a cyclonic gas- stripping method for the removal of organic matter from the pores of particles was invented. A techno- logical process was developed to recover organic matter from waste liquid by cyclonic gas stripping and classifying inorganic particles by means of airflow acceleration classification. A demonstration device was built in Sinopec's first ebullated-bed hydro-treatment unit for residual oil. Compared with the T-STAR fixed-bed gas-stripping technology designed in the United States, the maximum liquid-removal effi- ciency of the catalyst particles in this new process is 44.9% greater at the same temperature, and the time required to realize 95% liquid-removal efficiency is decreased from 1956.5 to 8.4 s. In addition, we achieved the classification and reuse of the catalyst particles contained in waste liquid according to their activity. A proposal to use this new technology was put forward regarding the control of organic waste liquid and the classification recovery of inorganic particles in an ebullated-bed hydro-treatment process for residual oil with a processing capacity of 2×106 t.a^1. It is estimated that the use of this new tech- nology will lead to the recovery of 3100 t.a 1 of diesel fuel and 647 t.a^1 of high-activity catalyst; in addi- tion, it will reduce the consumption of fresh catalyst by 518 t.a^1. The direct economic benefits of this process will be as high as 37.28 million CNY per year.
基金We are grateful to National Natural Science Foundation of China(Grant No.22375056,52272163)the Key R&D Program of Hebei(Grant No.216Z1201G)+1 种基金Natural Science Foundation of Hebei Province(Grant No.E2022208066,B2021208014)Key R&D Program of Hebei Technological Innovation Center of Chiral Medicine(Grant No.ZXJJ20220105).
文摘Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.
文摘The use of polar organic solvents for the separations of rare earth elements (Ⅲ) is effective especially for their extensive separations despite the solubility limitations. The study shows that polyacrylate anion exchangers, particularly the weakly basic, gel anion exchanger Amberlite IRA 68, can be applied to the separation of rare earth complexes with EDTA in H_2O-methanol and H_2O-ethanol systems. In most cases the determined distribution coefficients of Ln^(3+) complexes with EDTA in mixed media like water-methanol on polyacrylate anion exchangers are larger than those in pure water (media.)
基金Supported by the National Natural Science Foundation of China(No20875085)the Fund of Chinese Academy of Sciences(NoKJCX2-YW-H11)
文摘The antidepressant trimipramine(Tri) enantiomers were successfully separated by capillary electrophoresis(CE) coupled with electrochemiluminescence(ECL) detection in aqueous-organic media. A dual cyclodextrin(CD) system combining β-CD and hydroxypropyl-β-cyclodextrin(HP-β-CD) was used as chiral selector. Acetonitrile(ACN) was added to the running buffer to improve the separation efficiency, detection sensitivity and repeatability. The method was also successfully applied to the chiral separation of Tri in spiked human urine sample.
基金funding of the National Key Research and Development Plan(Grant 2017YFB0306600)the Project of SINOPEC(NO.117006).
文摘To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.