The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the opti...The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the optimal concentrations for better nutrient release was proposed. The characteristics of nutrient release of film-coated urea were evaluated by soil column leaching experiment. Organic-inorganic compound film-coated urea showed good characteristics of nutrient release, which could be well simulated by Logistic curve. The two parameters in this curve, a and r, can be used to present nutrient release of film-coated urea, and followed the order of B 〉 C 〉 A and C 〈 B 〈 A, respectively, indicating that the release was stronger with the increasing concentration of natural macromolecular compound in the membrane, which implied better controllability of nutrient release. The concentration of 5% of natural macromolecular compound showed better characteristic of nutrient release and can be utilized as a membrane material combined with inorganic mineral powders to develop film-coated slow-release fertilizer.展开更多
Continental epithermal ore deposits are commonly associated with sedimentary organic matter,oils or solid bitumen.These organics embedded in mineral deposits can convey valuable information of the ore genesis.However,...Continental epithermal ore deposits are commonly associated with sedimentary organic matter,oils or solid bitumen.These organics embedded in mineral deposits can convey valuable information of the ore genesis.However,the extent to which the formation of ore minerals was recorded by organic compounds remains largely unknown,as also is how metal-rich ores interfere with the molecular proxies in the temperature regime envisaged for hydrothermal activity.The molecular compositional changes of various polycyclic aromatic steranes and polycyclic aromatic hydrocarbons and compounds derived from the Jinding Pb/Zn deposit,SW China provide new data.Aliphatic regular steranes are present as traces.The transformation from polycyclic aromatic steranes to unsubstituted polycyclic aromatic hydrocarbons is observed to show an increased trend with increasing hydrothermal alteration levels;this is consistent with the transformation from unsubstituted polycyclic aromatic hydrocarbons to heterocyclic compounds.Dehydrocyclization(aromatization)of polycyclic biological compounds and hydrodecyclization(dearomatization)of polycyclic aromatic compounds are two important reaction pathways in hydrothermal systems with moderate temperature.This detailed investigation of organicinorganic interactions of two groups of polycyclic compounds with metal-rich ores provides insights into the questions on how and to what extent the formation of Pb/Zn deposits can be recorded by organics.This work will improve our understanding of carbon reduction,oxidation or condensation in the deep Earth and the carbon exchange between the Earth's crust and mantle,and may shed light on the processes for ultra-deep hydrocarbon exploration.展开更多
Organic-inorganic halides perovskites(OHPs)have drawn the attention of many researchers owing to their astonishing and unique optoelectronic properties.They have been extensively used for photovoltaic applications,ach...Organic-inorganic halides perovskites(OHPs)have drawn the attention of many researchers owing to their astonishing and unique optoelectronic properties.They have been extensively used for photovoltaic applications,achieving higher than 26%power conversion efficiency to date.These materials have potential to be deployed for many other applications beyond photovoltaics like photodetectors,sensors,light-emitting diodes(LEDs),and resistors.To address the looming challenge of Moore’s law and the Von Neumann bottleneck,many new technologies regarding the computation of architectures and storage of information are being extensively researched.Since the discovery of the memristor as a fourth component of the circuit,many materials are explored for memristive applications.Lately,researchers have advanced the exploration of OHPs for memristive applications.These materials possess promising memristive properties and various kinds of halide perovskites have been used for different applications that are not only limited to data storage but expand towards artificial synapses,and neuromorphic computing.Herein we summarize the recent advancements of OHPs for memristive applications,their unique electronic properties,fabrication of materials,and current progress in this field with some future perspectives and outlooks.展开更多
A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size an...A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.展开更多
Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the t...Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the tremendous difficulties in the design of completely reverse absorptions in transmissive and colored states.Herein,we report on an electrochemical device that can switch between colorless and black by using the electrochemical process of hybrid organic–inorganic perovskite MAPbBr_(3),which shows a high integrated contrast ratio of up to 73%from 400 to 800 nm.The perovskite solution can be used as the active layer to assemble the device,showing superior transmittance over the entire visible region in neutral states.By applying an appropriate voltage,the device undergoes reversible switching between colorless and black,which is attributed to the formation of lead and Br_(2)in the redox reaction induced by the electron transfer process in MAPbBr_(3).In addition,the contrast ratio can be modulated over the entire visible region by changing the concentration and the applied voltage.These results contribute toward gaining an insightful understanding of the electrochemical process of perovskites and greatly promoting the development of switchable devices.展开更多
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer...To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.展开更多
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ...The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.展开更多
Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid mater...Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.展开更多
The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical C...The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical CO_(2)(SC-CO_(2))compound fracturing which is expected to be an efficient and environmentally friendly way to develop shale gas.The coupling model is solved by the finite element method,and the results are in good agreement with the analytical solutions and fracturing experiments.Based on this model,the fracture propagation characteristics at the two stages of compound fracturing are studied and the influence of pressurization rate,in situ stress,bedding angle,and other factors are considered.The results show that at the SC-CO_(2)fracturing stage,a lower pressurization rate is conducive to formation of the branches around main fractures,while a higher pressurization rate inhibits formation of the branches around main fractures and promotes formation of the main fractures.Both bedding and in situ stress play a dominant role in the fracture propagation.When the in situ stress ratio(δ_(x)/δ_(y))is 1,the presence of bedding can reduce the initiation pressure and failure pressure.Nevertheless,it will cause the fracture to propagate along the bedding direction,reducing the fracture complexity.In rocks without bedding,hydraulic fracturing has the lengthening and widening effects for SC-CO_(2)induced fracture.In shale,fractures induced at the hydraulic fracturing stage are more likely to be dominated by in situ stresses and have a shorter reorientation radius.Therefore,fracture branches propagating along the maximum principal stress direction may be generated around the main fractures induced by SC-CO_(2)at the hydraulic fracturing stage.When the branches converge with the main fractures,fracture zones are easily formed,and thus the fracture complexity and damage area can be significantly increased.The results are instructive for the design and application of SC-CO_(2)compound fracturing.展开更多
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quanti...For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.展开更多
Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medici...Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medicinal plants around the world,it has recently been re-evaluated as a potential“new crop”due to the properties that differentiate it as one of the best vegetable sources of omega-3 fatty acid(α-linolenic acid),as well as a variety of nutrients and phytochemicals.Accordingly,emerging research has found that purslane exhibits health-promoting properties like anti-inflammatory,anti-hyperglycemic,antioxidant,neuroprotective,and immunomodulatory.These findings suggest that this species possesses a potential using as a dietary supplement beyond potherb and traditional medicine.This review systematically summarizes the up-to-date research carried out on purslane,including the nutritional compositions,bioactive compounds,and health benefits it exerts as well as limitations,challenges,and future directions of research.Finally,we hope that this review would provide purslane with a comprehensive reference and future scope as functional and health-promoting food for disease prevention and treatment.展开更多
Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also ...Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.展开更多
Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compou...Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compounds hold potential as a natural antidiabetic intervention that can be used to combat this global public health problem. Bioactive compounds found in this plant constitute promising interventions for combating obesity which is a major risk factor for the development of type 2 diabetes. These phytocompounds can work independently or synergistically to modulate appetite, lipase activity, adipogenesis and adipocyte apoptosis. However, the efficacy, mode of action and scope of management of diabetes by these compounds remains elusive. The current review aims to summarize data on efficacy in the management of diabetes, an antidiabetic candidate polyacetylenic compound and possible biological activities as an antidiabetic agent from the available literature. Much emphasis has been directed to cytopiloyne as a representative of polyacetylenic compounds extracted from Bidens pilosa and its activity on diabetic animal models. The majority of the studies conducted on animal models described antidiabetic mechanisms that range from hypoglycemic to secretagogue activity of cytopiloyne in a dose-dependent manner. A clinical trial pilot indicated improved glycemic control of Bidens pilosa formulation among diabetic patients in the study. Bidens pilosa and its compounds are highly potent antidiabetic agent(s) that should be graduated to an intervention for management of diabetes through pre-clinical and clinical trials to elucidate its efficacy and safety.展开更多
Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batt...Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batteries.In this paper,properties of intrinsic B or Si single-atom doped,and B-Si codoped graphene(GR)and graphdiyne(GDY)were investigated by using density functional theory-based calculations,in which the optimal doping configurations were explored for potential applications in adsorbing sulfur compounds.Results showed that both B or Si single-atom doping and B-Si codoping could substantially enhance the electron transport properties of GR and GDY,improving their surface activity.Notably,B and Si atoms displayed synergistic effects for the codoped configurations,where B-Si codoped GR/GDY exhibited much better performance in the adsorption of sulfurcontaining chemicals than single-atom doped systems.In addition,results demonstrated that,after B-Si codoping,the adsorption energy and charge transfer amounts of GDY with sulfur compounds were much larger than those of GR,indicating that B-Si codoped GDY might be a favorable material for more effectively interacting with sulfur reagents.展开更多
Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions a...Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.展开更多
Quercetin compounds have antioxidant,anti-inflammatory and anticancer pharmacological functions.Longterm exposure to acrylamide(AA)can cause liver injury and endanger human health.However,whether quercetin compounds c...Quercetin compounds have antioxidant,anti-inflammatory and anticancer pharmacological functions.Longterm exposure to acrylamide(AA)can cause liver injury and endanger human health.However,whether quercetin compounds can attenuate AA-induced liver injury and the specific mechanism are not clear.Here,we studied the mechanism and structure-activity relationship of quercetin compounds in reducing AA-induced hepatotoxicity in vivo and in vitro.In vivo studies found that quercetin-like compounds protect against AAinduced liver injury by reducing oxidative stress levels,activating the Akt/m TOR signaling pathway to attenuate autophagy,and improving mitochondrial apoptosis and endoplasmic reticulum stress-mediated apoptosis.In vitro studies found that quercetin compounds protected Hep G2 cells from AA by attenuating the activation of AA-induced autophagy,lowering reactive oxygen species(ROS)levels by exerting antioxidant effects and thus attenuating oxidative stress,increasing mitochondrial membrane potential(MMP),and improving apoptosis-related proteins,thus attenuating AA-induced apoptosis.Furthermore,the conformational differences between quercetin compounds correlated with their protective capacity against AA-induced hepatotoxicity,with quercetin showing the best protective capacity due to its strongest antioxidant activity.In conclusion,quercetin compounds can protect against AA-induced liver injury through multiple pathways of oxidative stress,autophagy and apoptosis,and their protective capacity correlates with antioxidant activity.展开更多
基金supported by a key project of Liaoning Province (2006215005)China Ministry of Education (209032)
文摘The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the optimal concentrations for better nutrient release was proposed. The characteristics of nutrient release of film-coated urea were evaluated by soil column leaching experiment. Organic-inorganic compound film-coated urea showed good characteristics of nutrient release, which could be well simulated by Logistic curve. The two parameters in this curve, a and r, can be used to present nutrient release of film-coated urea, and followed the order of B 〉 C 〉 A and C 〈 B 〈 A, respectively, indicating that the release was stronger with the increasing concentration of natural macromolecular compound in the membrane, which implied better controllability of nutrient release. The concentration of 5% of natural macromolecular compound showed better characteristic of nutrient release and can be utilized as a membrane material combined with inorganic mineral powders to develop film-coated slow-release fertilizer.
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFA0708504)National Natural Science Foundation of China(Grant Nos.U20B6001,42141021,42102185)。
文摘Continental epithermal ore deposits are commonly associated with sedimentary organic matter,oils or solid bitumen.These organics embedded in mineral deposits can convey valuable information of the ore genesis.However,the extent to which the formation of ore minerals was recorded by organic compounds remains largely unknown,as also is how metal-rich ores interfere with the molecular proxies in the temperature regime envisaged for hydrothermal activity.The molecular compositional changes of various polycyclic aromatic steranes and polycyclic aromatic hydrocarbons and compounds derived from the Jinding Pb/Zn deposit,SW China provide new data.Aliphatic regular steranes are present as traces.The transformation from polycyclic aromatic steranes to unsubstituted polycyclic aromatic hydrocarbons is observed to show an increased trend with increasing hydrothermal alteration levels;this is consistent with the transformation from unsubstituted polycyclic aromatic hydrocarbons to heterocyclic compounds.Dehydrocyclization(aromatization)of polycyclic biological compounds and hydrodecyclization(dearomatization)of polycyclic aromatic compounds are two important reaction pathways in hydrothermal systems with moderate temperature.This detailed investigation of organicinorganic interactions of two groups of polycyclic compounds with metal-rich ores provides insights into the questions on how and to what extent the formation of Pb/Zn deposits can be recorded by organics.This work will improve our understanding of carbon reduction,oxidation or condensation in the deep Earth and the carbon exchange between the Earth's crust and mantle,and may shed light on the processes for ultra-deep hydrocarbon exploration.
文摘Organic-inorganic halides perovskites(OHPs)have drawn the attention of many researchers owing to their astonishing and unique optoelectronic properties.They have been extensively used for photovoltaic applications,achieving higher than 26%power conversion efficiency to date.These materials have potential to be deployed for many other applications beyond photovoltaics like photodetectors,sensors,light-emitting diodes(LEDs),and resistors.To address the looming challenge of Moore’s law and the Von Neumann bottleneck,many new technologies regarding the computation of architectures and storage of information are being extensively researched.Since the discovery of the memristor as a fourth component of the circuit,many materials are explored for memristive applications.Lately,researchers have advanced the exploration of OHPs for memristive applications.These materials possess promising memristive properties and various kinds of halide perovskites have been used for different applications that are not only limited to data storage but expand towards artificial synapses,and neuromorphic computing.Herein we summarize the recent advancements of OHPs for memristive applications,their unique electronic properties,fabrication of materials,and current progress in this field with some future perspectives and outlooks.
基金Supported by the National "863" Project (No. 2001 AA 320206)and Shanghai Nano Special Foundation(No. 0120nm034).
文摘A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.
基金Natural Science Foundation of Hebei Province(China),Grant/Award Numbers:B2020203013,B2021203016Science and Technology Project of Hebei Education Department(China),Grant/Award Number:QN2020137+3 种基金Cultivation Project for Basic Research Innovation of Yanshan University(China),Grant/Award Number:2021LGZD015Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(China),Grant/Award Number:22567616HNatural Science Foundation of Heilongjiang Province(China),Grant/Award Number:LH2022B025Fundamental Research Funds for the Provincial Universities of Heilongjiang Province(China),Grant/Award Number:KYYWF10236190104。
文摘Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the tremendous difficulties in the design of completely reverse absorptions in transmissive and colored states.Herein,we report on an electrochemical device that can switch between colorless and black by using the electrochemical process of hybrid organic–inorganic perovskite MAPbBr_(3),which shows a high integrated contrast ratio of up to 73%from 400 to 800 nm.The perovskite solution can be used as the active layer to assemble the device,showing superior transmittance over the entire visible region in neutral states.By applying an appropriate voltage,the device undergoes reversible switching between colorless and black,which is attributed to the formation of lead and Br_(2)in the redox reaction induced by the electron transfer process in MAPbBr_(3).In addition,the contrast ratio can be modulated over the entire visible region by changing the concentration and the applied voltage.These results contribute toward gaining an insightful understanding of the electrochemical process of perovskites and greatly promoting the development of switchable devices.
基金supported by Special key project of technological innovation and application development in Yongchuan District,Chongqing(2021yc-cxfz20002)the special funds of central government for guiding local science and technology developmentthe funds for the platform projects of professional technology innovation(CSTC2018ZYCXPT0006).
文摘To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.
基金supported by National Natural Science Foundation of China(Nos.31871861 and 31501548)The Apicultural Industry Technology System(NCYTI-43-KXJ17)The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-IAR)。
文摘The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.
基金supported by the Fundamental-Core National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(2022R1F1A1072739).
文摘Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.
基金the funding support from the National Natural Science Foundation of China(Nos.52274093 and 52004236).
文摘The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical CO_(2)(SC-CO_(2))compound fracturing which is expected to be an efficient and environmentally friendly way to develop shale gas.The coupling model is solved by the finite element method,and the results are in good agreement with the analytical solutions and fracturing experiments.Based on this model,the fracture propagation characteristics at the two stages of compound fracturing are studied and the influence of pressurization rate,in situ stress,bedding angle,and other factors are considered.The results show that at the SC-CO_(2)fracturing stage,a lower pressurization rate is conducive to formation of the branches around main fractures,while a higher pressurization rate inhibits formation of the branches around main fractures and promotes formation of the main fractures.Both bedding and in situ stress play a dominant role in the fracture propagation.When the in situ stress ratio(δ_(x)/δ_(y))is 1,the presence of bedding can reduce the initiation pressure and failure pressure.Nevertheless,it will cause the fracture to propagate along the bedding direction,reducing the fracture complexity.In rocks without bedding,hydraulic fracturing has the lengthening and widening effects for SC-CO_(2)induced fracture.In shale,fractures induced at the hydraulic fracturing stage are more likely to be dominated by in situ stresses and have a shorter reorientation radius.Therefore,fracture branches propagating along the maximum principal stress direction may be generated around the main fractures induced by SC-CO_(2)at the hydraulic fracturing stage.When the branches converge with the main fractures,fracture zones are easily formed,and thus the fracture complexity and damage area can be significantly increased.The results are instructive for the design and application of SC-CO_(2)compound fracturing.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
文摘For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.
基金supported by the National Natural Science Foundation of China(32170408,32000280,and U1802287)the Ten Thousand Talents Plan of Yunnan Province for Industrial Technology Leading Talents(YNWR-CYJS-2019-011)+2 种基金Yunnan Revitalization Talent Support Program“Top Team”Project(202305AT350001)the Training of Technological Innovation Talents of Yunnan Province(202305AD160009 for Huan Yan)the Project of Yunnan Characteristic Plant Screening and R&D Service CXO Platform(2022YKZY001).
文摘Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medicinal plants around the world,it has recently been re-evaluated as a potential“new crop”due to the properties that differentiate it as one of the best vegetable sources of omega-3 fatty acid(α-linolenic acid),as well as a variety of nutrients and phytochemicals.Accordingly,emerging research has found that purslane exhibits health-promoting properties like anti-inflammatory,anti-hyperglycemic,antioxidant,neuroprotective,and immunomodulatory.These findings suggest that this species possesses a potential using as a dietary supplement beyond potherb and traditional medicine.This review systematically summarizes the up-to-date research carried out on purslane,including the nutritional compositions,bioactive compounds,and health benefits it exerts as well as limitations,challenges,and future directions of research.Finally,we hope that this review would provide purslane with a comprehensive reference and future scope as functional and health-promoting food for disease prevention and treatment.
基金supported by the fund from Natural Science Foundation of Zhejiang Province,China(LY17C200017)。
文摘Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.
文摘Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compounds hold potential as a natural antidiabetic intervention that can be used to combat this global public health problem. Bioactive compounds found in this plant constitute promising interventions for combating obesity which is a major risk factor for the development of type 2 diabetes. These phytocompounds can work independently or synergistically to modulate appetite, lipase activity, adipogenesis and adipocyte apoptosis. However, the efficacy, mode of action and scope of management of diabetes by these compounds remains elusive. The current review aims to summarize data on efficacy in the management of diabetes, an antidiabetic candidate polyacetylenic compound and possible biological activities as an antidiabetic agent from the available literature. Much emphasis has been directed to cytopiloyne as a representative of polyacetylenic compounds extracted from Bidens pilosa and its activity on diabetic animal models. The majority of the studies conducted on animal models described antidiabetic mechanisms that range from hypoglycemic to secretagogue activity of cytopiloyne in a dose-dependent manner. A clinical trial pilot indicated improved glycemic control of Bidens pilosa formulation among diabetic patients in the study. Bidens pilosa and its compounds are highly potent antidiabetic agent(s) that should be graduated to an intervention for management of diabetes through pre-clinical and clinical trials to elucidate its efficacy and safety.
基金the support of the National Natural Science Foundation of China(Grant No.51472074).
文摘Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batteries.In this paper,properties of intrinsic B or Si single-atom doped,and B-Si codoped graphene(GR)and graphdiyne(GDY)were investigated by using density functional theory-based calculations,in which the optimal doping configurations were explored for potential applications in adsorbing sulfur compounds.Results showed that both B or Si single-atom doping and B-Si codoping could substantially enhance the electron transport properties of GR and GDY,improving their surface activity.Notably,B and Si atoms displayed synergistic effects for the codoped configurations,where B-Si codoped GR/GDY exhibited much better performance in the adsorption of sulfurcontaining chemicals than single-atom doped systems.In addition,results demonstrated that,after B-Si codoping,the adsorption energy and charge transfer amounts of GDY with sulfur compounds were much larger than those of GR,indicating that B-Si codoped GDY might be a favorable material for more effectively interacting with sulfur reagents.
基金the Ministry of Higher Education,Malaysia for financial support via the Transdisciplinary Research Grant Scheme Project(Grant No.TRGS/1/2020/UPM/02/7)。
文摘Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.
基金supported by the National Natural Science Foundation of China(32072142,31972099)Guangxi Science and Technology Base and Talent Special Projects(Guike AD21220004)。
文摘Quercetin compounds have antioxidant,anti-inflammatory and anticancer pharmacological functions.Longterm exposure to acrylamide(AA)can cause liver injury and endanger human health.However,whether quercetin compounds can attenuate AA-induced liver injury and the specific mechanism are not clear.Here,we studied the mechanism and structure-activity relationship of quercetin compounds in reducing AA-induced hepatotoxicity in vivo and in vitro.In vivo studies found that quercetin-like compounds protect against AAinduced liver injury by reducing oxidative stress levels,activating the Akt/m TOR signaling pathway to attenuate autophagy,and improving mitochondrial apoptosis and endoplasmic reticulum stress-mediated apoptosis.In vitro studies found that quercetin compounds protected Hep G2 cells from AA by attenuating the activation of AA-induced autophagy,lowering reactive oxygen species(ROS)levels by exerting antioxidant effects and thus attenuating oxidative stress,increasing mitochondrial membrane potential(MMP),and improving apoptosis-related proteins,thus attenuating AA-induced apoptosis.Furthermore,the conformational differences between quercetin compounds correlated with their protective capacity against AA-induced hepatotoxicity,with quercetin showing the best protective capacity due to its strongest antioxidant activity.In conclusion,quercetin compounds can protect against AA-induced liver injury through multiple pathways of oxidative stress,autophagy and apoptosis,and their protective capacity correlates with antioxidant activity.