Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE...Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.展开更多
Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid mater...Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.展开更多
Purpose: To investigate the periapical tissue response after root end filling with intermediate restorative material (IRM) and filling of the root-end resection bone defects with autogenous bone or a bone graft substi...Purpose: To investigate the periapical tissue response after root end filling with intermediate restorative material (IRM) and filling of the root-end resection bone defects with autogenous bone or a bone graft substitute in comparison to empty controls. Materials and Methods: Vital roots of the second, third and fourth mandibular premolars in six healthy mongrel dogs were apectomized. The root canals were prepared and sealed with IRM following a standardized surgical procedure. The resection bone defects were either filled with autogenous bone (PB) or one of the bone graft substitutes;CERAMENTTM|BONE VOID FILLER, ChronOS?, TigranTM PTG, Easygraft? CLASSIC or left empty. After 120 days the animals were sacrificed and the specimens were analyzed radiologically and histologically. Kruskal-Wallis and Mann-Whitney tests were performed for statistical evaluation. Results: 34 sections were analyzed histologically. The evaluation revealed a variation in the outcome amongst the tested options, regarding reestablishment of the periapical bone healing and inflammatory infiltration in the sections. According to the tested variables, there was no statistical significant difference between the materials when comparing all groups as a whole. When comparing individual materials to each other there was statistical differences among some of the tested materials. Conclusion: The healing outcome after periapical surgery of a five-wall resection defect could not be increased by infill with autogenous bone or bone graft substitutes. The most important factor for the healing outcome in periapical surgery is the quality of the root-end sealing. The healing outcome after some of the tested bone substitutes, might be improved by longer healing time.展开更多
Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid o...Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid organic-inorganic perovskites possess excellent optical and electronic properties, including strong light absorption, high carrier abilities, optimized charge diffusion lengths, and reduced charge recombination etc., leading to their widespread applications in advanced solar energy technologies (e.g.high efficiency perovskite solar cells). However, there is still a lack of investigations regarding fundamental properties such as ferroelectricity in these perovskites.As conventional ferroelectric ceramics are prepared at high temperature and have no mechanically flexibility,low-temperature proceed and flexible perovskite ferroelectrics have become promising candidates and should be exploited for future flexible ferroelectric applications. Here, ferroelectric properties in hybrid organic-inorganic perovskites and several state-of-the-art perovskite ferroelectrics are reviewed. Novel ferroelectric applications of hybrid organic-inorganic perovskites are discussed as well, providing guideline for realizing future high performance and flexible ferroelectric devices.展开更多
Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadoli...Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadolinium ion selective electrode besides the effects of their structures.1.Effect of preparation process of the grafted polymers on the properties ofgadolinium ion selective electrodesThe electrode membranes which consist of functional polymers as active materials were prepared by re-action of gadolinium chloride with the radiation grafted clmer of acrlic acid and polystyrene of which展开更多
To obtain the safety of drinking water, an antibacterial material was prepared by loading silver (Ag) onto fibrous iminodiacetate (IDA) adsorbent, which was synthesized by radiation-induced graft polymerization of gly...To obtain the safety of drinking water, an antibacterial material was prepared by loading silver (Ag) onto fibrous iminodiacetate (IDA) adsorbent, which was synthesized by radiation-induced graft polymerization of glycidyl methacrylate and subsequent chemical modification of the produced epoxy group to an IDA group (IDA-Ag). A total amount of loaded Ag on the IDA-Ag fabric was 0.4 mmol-Ag/g-fabric. From an observation of the IDA-Ag fabric cross section by a scanning electron microscope energy dispersive X-ray spectrometer, Ag was distributed to IDA layer uniformly. As a result of evaluating antibacterial effects by the column mode water flow test with stream water, the effective Ag concentration was monitored 0.05 ppm at irrespective flow rate which was functioned to the antibacterial performance. The antibacterial effects for general bacteria were indicated until BV (BV: steam water volume/IDA-Ag fabric volume) 6000, and for colitis germ legions were completely disinfected until BV 6000.展开更多
[Objectives]This study was conducted to develop a rapid identification method for citrus germline materials resistant to Huanglongbing disease and lay a basis for accelerating citrus breeding for resistance to Huanglo...[Objectives]This study was conducted to develop a rapid identification method for citrus germline materials resistant to Huanglongbing disease and lay a basis for accelerating citrus breeding for resistance to Huanglongbing and increasing the breeding efficiency.[Methods]Thirty-six citrus germplasms suspected to be resistant to citrus Huanglongbing disease were collected.The method of direct high grafting to citrus trees infected with Huanglongbing pathogen was adopted.The resistance of the test materials was identified and evaluated by field symptoms combined with quantitative PCR.It was defined as the top grafting identification method.[Results]The test materials that were grafted in spring started to germinate after one month,and three months late(June 5,2018)typical mottled yellowing on leaves was observed on KH-14 for the first time.After four months(July 5,2018)of top grafting,typical mottled yellowing occurred on 23 materials,and 11 materials showed no such symptom.After six months(September 4,2018)of top grafting,although the growth of KH-18,KH-12,KHY-4,KHY-5 and KHY-6 were normal,yellowing was observed on their leaves.Only KH-21 grew well,and showed no yellow shoots and yellowing leaves.It was identified as the material with resistance to Huanglongbing disease.Quantitative PCR tests on the above six materials showed that KH-21 was negative and other five were positive.Real-time fluorescence quantitative PCR test indicated that the average Huanglongbing bacteria amount in KH-21 was 1870.0 cell/μg DNA,and the average Huanglongbing bacteria amount in the control material was 372285.5 cell/μg DNA,indicating KH-21 was resistant to Huanglongbing bacteria.[Conclusions]The method for infecting bacteria by top grafting takes six months,can detect large amount of seedlings,and is time-saving,efficient,cost-saving and accurate.This method can quickly identify the resistance of citrus varieties to citrus Huanglongbing disease,and can be popularized and used in the identification of citrus Huanglongbing disease resistance.展开更多
Grafting is a commonly used method for citrus propagation and transmitting'Candidatus Liberibacter asiaticus'(CLas),the putative causing agent of citrus Huanglongbing(HLB).Optimization of the grafting inoculat...Grafting is a commonly used method for citrus propagation and transmitting'Candidatus Liberibacter asiaticus'(CLas),the putative causing agent of citrus Huanglongbing(HLB).Optimization of the grafting inoculation methods facilitates the material preparation in HLB research.Citrus buds with CLas were grafted onto healthy sour tangerine(Citrus sunki Hort.ex Tanaka)seedlings by different methods such as top grafting(‘T'grafting and‘V'grafting)and side grafting(abdominal grafting).Along with the symptom observation,titers of CLas in the leaves were detected by RTqPCR monthly.The correlation between the growth status of buds or different grafting methods and the success rate of HLB transmission were analyzed.Our results suggest that sufficient DNA could be extracted to accurately detect the CLas from even only 0.0125 g leaf midrib or branch bark.The probability of CLas transmission was higher in plants inoculated with buds in better growth conditions.The success rate of‘T'grafting was significantly higher than that of side grafting and‘V'grafting.Additionally,in terms of HLB transmission efficiency,the two-bud grafting scheme was superior to the single-bud and three-bud grafting schemes.In conclusion,the grafting combinations with the highest HLB transmission efficiency were screened to provide a methodological reference for the practice or research of grafting to obtain plant material.展开更多
The selection of ideal posttraumatic augmentation rhinoplasty materials and technical strategies has always been a pressing challenge.Owing to the complexity of the traumatic nasal anatomical structure,such procedures...The selection of ideal posttraumatic augmentation rhinoplasty materials and technical strategies has always been a pressing challenge.Owing to the complexity of the traumatic nasal anatomical structure,such procedures are more complicated than ordinary cosmetic rhinoplasty.The choice of reconstruction material should emphasize its inherent characteristics,such as biocompatibility,anti-infective ability,strength,and plasticity.With the development of rhinoplasty,the choice of material is less limited and composite materials have become mainstream.This review outlines current composite materials and techniques in posttraumatic augmentation rhinoplasty.展开更多
目的:从临床指标方面系统评价并比较自体软组织替代材料与结缔组织移植物联合冠向复位瓣技术治疗天然牙牙龈退缩的疗效。方法:计算机检索PubMed、EMBASE、Web of Science、维普、万方、知网等数据库中关于自体软组织替代材料或结缔组织...目的:从临床指标方面系统评价并比较自体软组织替代材料与结缔组织移植物联合冠向复位瓣技术治疗天然牙牙龈退缩的疗效。方法:计算机检索PubMed、EMBASE、Web of Science、维普、万方、知网等数据库中关于自体软组织替代材料或结缔组织移植物(CTG)治疗牙龈退缩的随机对照试验,检索时限从2013年1月至2023年12月。结果:最终纳入14个随机对照研究,1117个牙龈退缩位点。Meta分析显示,术后6个月时,CTG与异种胶原基质(XCM)比较能更好地降低牙龈退缩深度,与富血小板纤维蛋白(PRF)、脱细胞真皮基质(ADM)比较无明显区别;CTG与PRF、ADM、XCM比较角化龈宽度增量更明显;根面覆盖率指标差异无统计学意义;PRF、XCM可以明显降低患者术后的疼痛感。结论:研究表明,自体软组织替代材料与CTG相比,对于治疗牙龈退缩的效果并没有显著差异,但是前者可以降低患者术后疼痛感。展开更多
背景:锌基合金医用植入材料有优异的力学性能、完全可降解性、良好的生物相容性,主要用于骨科植入物、心血管支架、胆管支架、气管支架、神经导管等。目的:综述可降解锌基合金应用于骨缺损修复的研究进展,展望锌基材料可期研究方向与成...背景:锌基合金医用植入材料有优异的力学性能、完全可降解性、良好的生物相容性,主要用于骨科植入物、心血管支架、胆管支架、气管支架、神经导管等。目的:综述可降解锌基合金应用于骨缺损修复的研究进展,展望锌基材料可期研究方向与成果。方法:检索PubMed、Web of Science、万方及中国知网数据库,选择各数据库建库至2023年6月收录的各类可降解锌基合金用于骨植入材料研究的相关文献,对生物可降解锌基合金的基本特性进行概述,对锌基合金促进骨组织修复作用进行梳理和归纳总结,讨论当前的研究热点与不足。结果与结论:①锌基合金具备良好的生物相容性,以锌基合金为基体材料,借助支架结构构建技术和涂层优化工艺将有效提高锌基合金的骨传导性,并且使其降解产物具备高效骨诱导性,以调控成骨、破骨细胞的基因表达,促进骨缺损后的修复重建;②然而在锌基合金优化的研究中,涂层工艺相对不足,增材负载技术尚缺乏;③锌基合金拥有良好的机械、生物特性,通过特殊工艺可增加材料的骨传导性、骨诱导性以有效提高其促进骨修复重建能力,并有望进一步实现个性化移植材料的研发。优化涂层与增材负载等技术融合于锌基合金的研究有待进一步探讨。展开更多
文摘Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.
基金supported by the Fundamental-Core National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(2022R1F1A1072739).
文摘Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.
文摘Purpose: To investigate the periapical tissue response after root end filling with intermediate restorative material (IRM) and filling of the root-end resection bone defects with autogenous bone or a bone graft substitute in comparison to empty controls. Materials and Methods: Vital roots of the second, third and fourth mandibular premolars in six healthy mongrel dogs were apectomized. The root canals were prepared and sealed with IRM following a standardized surgical procedure. The resection bone defects were either filled with autogenous bone (PB) or one of the bone graft substitutes;CERAMENTTM|BONE VOID FILLER, ChronOS?, TigranTM PTG, Easygraft? CLASSIC or left empty. After 120 days the animals were sacrificed and the specimens were analyzed radiologically and histologically. Kruskal-Wallis and Mann-Whitney tests were performed for statistical evaluation. Results: 34 sections were analyzed histologically. The evaluation revealed a variation in the outcome amongst the tested options, regarding reestablishment of the periapical bone healing and inflammatory infiltration in the sections. According to the tested variables, there was no statistical significant difference between the materials when comparing all groups as a whole. When comparing individual materials to each other there was statistical differences among some of the tested materials. Conclusion: The healing outcome after periapical surgery of a five-wall resection defect could not be increased by infill with autogenous bone or bone graft substitutes. The most important factor for the healing outcome in periapical surgery is the quality of the root-end sealing. The healing outcome after some of the tested bone substitutes, might be improved by longer healing time.
基金supported by the National Higher Education Institution General Research and Development Funding under Grant No.ZYGX2012J034National Basic Research Program of China(973)under Grants No.2015CB358600 and No.2013CB933801
文摘Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid organic-inorganic perovskites possess excellent optical and electronic properties, including strong light absorption, high carrier abilities, optimized charge diffusion lengths, and reduced charge recombination etc., leading to their widespread applications in advanced solar energy technologies (e.g.high efficiency perovskite solar cells). However, there is still a lack of investigations regarding fundamental properties such as ferroelectricity in these perovskites.As conventional ferroelectric ceramics are prepared at high temperature and have no mechanically flexibility,low-temperature proceed and flexible perovskite ferroelectrics have become promising candidates and should be exploited for future flexible ferroelectric applications. Here, ferroelectric properties in hybrid organic-inorganic perovskites and several state-of-the-art perovskite ferroelectrics are reviewed. Novel ferroelectric applications of hybrid organic-inorganic perovskites are discussed as well, providing guideline for realizing future high performance and flexible ferroelectric devices.
文摘Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadolinium ion selective electrode besides the effects of their structures.1.Effect of preparation process of the grafted polymers on the properties ofgadolinium ion selective electrodesThe electrode membranes which consist of functional polymers as active materials were prepared by re-action of gadolinium chloride with the radiation grafted clmer of acrlic acid and polystyrene of which
文摘To obtain the safety of drinking water, an antibacterial material was prepared by loading silver (Ag) onto fibrous iminodiacetate (IDA) adsorbent, which was synthesized by radiation-induced graft polymerization of glycidyl methacrylate and subsequent chemical modification of the produced epoxy group to an IDA group (IDA-Ag). A total amount of loaded Ag on the IDA-Ag fabric was 0.4 mmol-Ag/g-fabric. From an observation of the IDA-Ag fabric cross section by a scanning electron microscope energy dispersive X-ray spectrometer, Ag was distributed to IDA layer uniformly. As a result of evaluating antibacterial effects by the column mode water flow test with stream water, the effective Ag concentration was monitored 0.05 ppm at irrespective flow rate which was functioned to the antibacterial performance. The antibacterial effects for general bacteria were indicated until BV (BV: steam water volume/IDA-Ag fabric volume) 6000, and for colitis germ legions were completely disinfected until BV 6000.
基金Guangxi Science and Technology Major Project(GK AA18118046-6GK AA18118046-4)+2 种基金National Key R&D Program of China(2019YFD1001402-HX01)Guangxi Science and Technology Base and Talent Project(GK AD16380046)Guangxi Innovation Team Citrus Chief Expert Post Project of National Modern Agriculture Industrial Technology System(nycytxgxcxtd-05-01)。
文摘[Objectives]This study was conducted to develop a rapid identification method for citrus germline materials resistant to Huanglongbing disease and lay a basis for accelerating citrus breeding for resistance to Huanglongbing and increasing the breeding efficiency.[Methods]Thirty-six citrus germplasms suspected to be resistant to citrus Huanglongbing disease were collected.The method of direct high grafting to citrus trees infected with Huanglongbing pathogen was adopted.The resistance of the test materials was identified and evaluated by field symptoms combined with quantitative PCR.It was defined as the top grafting identification method.[Results]The test materials that were grafted in spring started to germinate after one month,and three months late(June 5,2018)typical mottled yellowing on leaves was observed on KH-14 for the first time.After four months(July 5,2018)of top grafting,typical mottled yellowing occurred on 23 materials,and 11 materials showed no such symptom.After six months(September 4,2018)of top grafting,although the growth of KH-18,KH-12,KHY-4,KHY-5 and KHY-6 were normal,yellowing was observed on their leaves.Only KH-21 grew well,and showed no yellow shoots and yellowing leaves.It was identified as the material with resistance to Huanglongbing disease.Quantitative PCR tests on the above six materials showed that KH-21 was negative and other five were positive.Real-time fluorescence quantitative PCR test indicated that the average Huanglongbing bacteria amount in KH-21 was 1870.0 cell/μg DNA,and the average Huanglongbing bacteria amount in the control material was 372285.5 cell/μg DNA,indicating KH-21 was resistant to Huanglongbing bacteria.[Conclusions]The method for infecting bacteria by top grafting takes six months,can detect large amount of seedlings,and is time-saving,efficient,cost-saving and accurate.This method can quickly identify the resistance of citrus varieties to citrus Huanglongbing disease,and can be popularized and used in the identification of citrus Huanglongbing disease resistance.
基金supported by the Natural Science Foundation of Guangdong Province(2022A1515010889)China Agriculture Research System of MOF and MARA.
文摘Grafting is a commonly used method for citrus propagation and transmitting'Candidatus Liberibacter asiaticus'(CLas),the putative causing agent of citrus Huanglongbing(HLB).Optimization of the grafting inoculation methods facilitates the material preparation in HLB research.Citrus buds with CLas were grafted onto healthy sour tangerine(Citrus sunki Hort.ex Tanaka)seedlings by different methods such as top grafting(‘T'grafting and‘V'grafting)and side grafting(abdominal grafting).Along with the symptom observation,titers of CLas in the leaves were detected by RTqPCR monthly.The correlation between the growth status of buds or different grafting methods and the success rate of HLB transmission were analyzed.Our results suggest that sufficient DNA could be extracted to accurately detect the CLas from even only 0.0125 g leaf midrib or branch bark.The probability of CLas transmission was higher in plants inoculated with buds in better growth conditions.The success rate of‘T'grafting was significantly higher than that of side grafting and‘V'grafting.Additionally,in terms of HLB transmission efficiency,the two-bud grafting scheme was superior to the single-bud and three-bud grafting schemes.In conclusion,the grafting combinations with the highest HLB transmission efficiency were screened to provide a methodological reference for the practice or research of grafting to obtain plant material.
文摘The selection of ideal posttraumatic augmentation rhinoplasty materials and technical strategies has always been a pressing challenge.Owing to the complexity of the traumatic nasal anatomical structure,such procedures are more complicated than ordinary cosmetic rhinoplasty.The choice of reconstruction material should emphasize its inherent characteristics,such as biocompatibility,anti-infective ability,strength,and plasticity.With the development of rhinoplasty,the choice of material is less limited and composite materials have become mainstream.This review outlines current composite materials and techniques in posttraumatic augmentation rhinoplasty.
文摘目的:从临床指标方面系统评价并比较自体软组织替代材料与结缔组织移植物联合冠向复位瓣技术治疗天然牙牙龈退缩的疗效。方法:计算机检索PubMed、EMBASE、Web of Science、维普、万方、知网等数据库中关于自体软组织替代材料或结缔组织移植物(CTG)治疗牙龈退缩的随机对照试验,检索时限从2013年1月至2023年12月。结果:最终纳入14个随机对照研究,1117个牙龈退缩位点。Meta分析显示,术后6个月时,CTG与异种胶原基质(XCM)比较能更好地降低牙龈退缩深度,与富血小板纤维蛋白(PRF)、脱细胞真皮基质(ADM)比较无明显区别;CTG与PRF、ADM、XCM比较角化龈宽度增量更明显;根面覆盖率指标差异无统计学意义;PRF、XCM可以明显降低患者术后的疼痛感。结论:研究表明,自体软组织替代材料与CTG相比,对于治疗牙龈退缩的效果并没有显著差异,但是前者可以降低患者术后疼痛感。
文摘背景:锌基合金医用植入材料有优异的力学性能、完全可降解性、良好的生物相容性,主要用于骨科植入物、心血管支架、胆管支架、气管支架、神经导管等。目的:综述可降解锌基合金应用于骨缺损修复的研究进展,展望锌基材料可期研究方向与成果。方法:检索PubMed、Web of Science、万方及中国知网数据库,选择各数据库建库至2023年6月收录的各类可降解锌基合金用于骨植入材料研究的相关文献,对生物可降解锌基合金的基本特性进行概述,对锌基合金促进骨组织修复作用进行梳理和归纳总结,讨论当前的研究热点与不足。结果与结论:①锌基合金具备良好的生物相容性,以锌基合金为基体材料,借助支架结构构建技术和涂层优化工艺将有效提高锌基合金的骨传导性,并且使其降解产物具备高效骨诱导性,以调控成骨、破骨细胞的基因表达,促进骨缺损后的修复重建;②然而在锌基合金优化的研究中,涂层工艺相对不足,增材负载技术尚缺乏;③锌基合金拥有良好的机械、生物特性,通过特殊工艺可增加材料的骨传导性、骨诱导性以有效提高其促进骨修复重建能力,并有望进一步实现个性化移植材料的研发。优化涂层与增材负载等技术融合于锌基合金的研究有待进一步探讨。