A novel polyhedral oligomeric silsesquioxane(POSS)-based organic-inorganic hybrid nanocomposite(EF-POSS) was prepared by Pt-catalyzed hydrosilylation reaction of octahydridosilsesquioxane(T_8H_8,POSS) with a luminesce...A novel polyhedral oligomeric silsesquioxane(POSS)-based organic-inorganic hybrid nanocomposite(EF-POSS) was prepared by Pt-catalyzed hydrosilylation reaction of octahydridosilsesquioxane(T_8H_8,POSS) with a luminescent substituted acetylene(2- ethynyl-7-(4-(4-methylstyryl)styryl)-9,9-dioctyl-9H-fluorene(EF)) in high yield.The hybrid nanocomposite was soluble in common solvents such as CH_2Cl_2,CHCl_3,THF and 1,4-dioxane.Its structure and property were characterized by FTIR, NMR,TGA,UV and PL,respectively.The results show that the hybrid nanocomposite with high thermal stability emits stable blue light as a result of photo excitation and possesses high photoluminescence quantum efficiency(φ_(FL)).展开更多
Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the indi...Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.展开更多
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research ...Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research effort aims to develop novel hybrid composites based on AA 2014 alloy through the use of liquid metallurgy stir casting to reinforce dual ceramic particles of Zirconium Diboride(ZrB_(2))and Boron Carbide(B4C).The weight percentage(wt%)of ZrB_(2) was varied(0,5,10,and 15),while a constant 5 wt%of B4C was maintained during this fabrication.The as-cast samples have been assessed using an Optical Microscope(OM)and a Scanning Electron Microscope(SEM)with Energy Dispersive Spectroscopy(EDS).The properties such as hardness,tensile strength,and wear characteristics of stir cast specimens were assessed to examine the impact of varying weight percentages of reinforcements in AA 2014 alloy.In particular,dry sliding wear behaviour was evaluated considering varied loads using a pin-on-disc tribotester.As the weight%of ZrB_(2) grew and B4C was incorporated,hybrid composites showed higher hardness,tensile strength,and wear resistance.Notably,the incorporation of a cumulative reinforcement consisting of 15 wt%ZrB_(2) and 5 wt%B4C resulted in a significant 31.86%increase in hardness and a 44.1%increase in tensile strength compared to AA 2014 alloy.In addition,it has been detected that wear resistance of hybrid composite pin(containing 20 wt%cumulative reinforcement)is higher than that of other stir cast wear test pins during the whole range of applied loads.Fractured surfaces of tensile specimens showed ductile fracture in the AA 2014 matrix and mixed mode for hybrid composites.Worn surfaces obtained employing higher applied load indicated abrasive wear with little plastic deformation for hybrid composites and dominant adhesive wear for matrix alloy.Hence,the superior mechanical and tribological performance of hybrid composites can be attributed to dual reinforcement particles being dispersed well and the effective transmission of load at this specific composition.展开更多
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp...The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively.展开更多
Composite materials from oil palmfiber enhance sustainability by utilizing renewable resources,reducing depen-dence on non-renewable materials,and lessening environmental impact.Despite their mechanical and dimen-sion...Composite materials from oil palmfiber enhance sustainability by utilizing renewable resources,reducing depen-dence on non-renewable materials,and lessening environmental impact.Despite their mechanical and dimen-sional stability limitations,oil palmfiber-based polymer composites offer significant advantages,such as natural abundance,potential weight reduction,and cost-effectiveness due to local availability and renewability.The growing interest in oil palm hybrid composites,made from blending differentfibers,is due to their custo-mizable mechanical and physical properties.Hybridization is one of the most effective methods to reinforce and improve the performance of oil palm-derived composite materials.This review investigates the structural qualities of hybrid composites made from oil palmfibers,their suitability for diverse applications,and recent advancements in thefield.By focusing on the availability,properties,applications,challenges,and future direc-tions of oil palmfiber hybrid composites,this review highlights the potential of these materials to enhance mechanical and functional properties,thereby contributing to sustainable development and innovation in com-posite materials.展开更多
Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptabilit...Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptability to a wide variety of goods.However,the major difficulties of using thesefibres are their existing poor dimensional stability and the extreme hydrophilicity.In assessing the mechanical properties(MP)of composites,the interfacial bonding(IB)happening between the NFR and the polymer matrix(PM)plays an incredibly significant role.When compared to NFR/syntheticfibre hybrid composites,hybrid composites(HC)made up of two separate NFR are less prevalent;yet,these hybrid composites also have the potential to be valuable materials in terms of environmental issues.A new dimension to theflexibility of composites reinforced with NFR is added by the cost-effective manufacture of hybrid composites utilising NFR.The purpose of this study is to offer an over-view of the keyfindings that were presented on hybrid composites.The emphasis was focused on the factors that influence the performance of the naturalfiber composites,diverse approaches to enhancing MP,physical,electri-cal,and thermal characteristics of the HC.HC study in polymer science gains interest for applications in con-struction and automotive industries.展开更多
The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusi...The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusion of engineered fiber is one of the promising methods to not only enhanced the mechanical performance but also suppressed the drawbacks that associate with such plant-based fiber to some extent. A usual hand lay-up method was taken-up in this work to fabricate four layered of hybrid kenaf(K)/glass(G)polyester laminates with different stacking order such as KKKK,KGKG,KGGK,GKKG and GGGG. The erosive character of the laminates was examined under three distinct particle velocities(48m/s, 70m/s,82m/s)and four different impact angles(30°, 45°, 60°, 90°). All fabricated laminates exhibited a semiductile character at lower velocities(48m/s and70m/s)as peak wear rate was observed at45° impact angle. However,they showed a semi-brittle character at high velocity(82m/s)as maximum rate of erosion was noticed at60° impact angle. Again,the influence of stacking order of piles on erosion wear was also clearly noticed. Moreover,the semi-brittle/semi-ductile characterization was also evidenced in accordance to the range of erosion efficiencies. The micro-structures of worn surfaces were inspected thoroughly from the images of scanning electron microscope(SEM)to evident the mechanism of erosion.展开更多
Modern technology for developing new items made from renewable resources is becoming more and more popular as a result of rising environmental concern.Recently,contemporary polymer composites have included the hybridi...Modern technology for developing new items made from renewable resources is becoming more and more popular as a result of rising environmental concern.Recently,contemporary polymer composites have included the hybridization of natural fibers with synthetic ones,along with the inclusion of a variety of biowaste filler for developing sustainable goods.In this work,the kenaf/glass hybrid polyester composites are strengthened by the addition of fish scale(FS),which is taken from the fishs outermost layer of skin.Five different stacked-order laminates,such as KKKK,KGKG,GKKG,KGGK,and GGGG,are fabricated by using the hand lay-up method with four different weight concentrations of filler content:0%,5%,10%,and 15%.Mechanical possessions such as tensile,flexural,impact strength and micro-hardness have been evaluated through experimentation in accordance with ASTM standards.The experimental findings revealed that,the tensile strength and micro-hardness value of KGKG laminates with 15wt% of FS filler are found to be maximum of 118.72 MPa and 17.82 HV respectively which are 39.67%and 26.11%greater than that of KGKG laminates without FS filler.However,the flexural and impact strength of same laminates with 10 wt% FS filler exhibited a maximum value of 142.77 MPa and 62.08 kJ/m^(2).In order to corroborate its applicability for structural and building materials in open environment,the dimensional stability of the composite has been studied through moisture absorption test.The influences of FS filler loading on dimensional stability and resistance to moisture absorption capacity of laminates are also investigated.The experimental results reflected that the addition of FS-filler has significantly improved the dimensional stability of the laminates in moist environment by reducing the moisture absorption tendency.To further support the mode of failures,a fractography investigation of fractured surfaces was conducted.展开更多
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybr...Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.展开更多
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE...Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.展开更多
Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed ...Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.展开更多
Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation ...Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation displayed that the Sip-SiCp/Al hybrid composites with bilayer structure were compact without gas pores and the intergradation between Sip/Al layer and SiCp/Al layer was homogeneous and continuous. Further investigation revealed that the Sip-SiCp/Al hybrid composites possessed low density (2.96 g/cm^3), high gas tightness (1.0 mPa·cm^3)/s), excellent thermal management function as a result of high thermal conductivity (194 W/(m·K) and low coefficient of thermal expansion (7.0×10^-6 K-1). Additionally, Sip-SiCp/Al hybrid composites had outstanding laser welding adaptability, which is significantly important for electronic packaging applications. The gas tightness of components after laser welding (48 mPa·cm^3)/s) can well match the requirement of advanced electronic packaging. Several kinds of these precision components passed tests and were put into production.展开更多
The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive mod...The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive modification, and performing fiber surface modification. As fabric composites, the weave structures play an important role in the mechanical and tribological performances of the liners. However, hardly any literature is available on the friction and wear behavior of such composites with different weave structures. In this paper, three weave structures (plain, twill 1/3 and satin 8/5) of hybrid Kevlar/PTFE fabric composites are selected and pin-on-flat linear reciprocating wear studies are done on a CETR tester under different pressures and different frequencies. The relationship between the tensile strength and the wear performance are studied. The morphologies of the worn surfaces under the typical test conditions are analyzed by means of scanning electron microscopy (SEM). The analysis results show that at 10 MPa, satin 8/5 performs the best in friction-reduction and antiwear performance, and plain is the worst. At 30 MPa, however, the antiwear performance is reversed and satin 8/5 does not even complete the 2 h wear test at 16 Hz. There is no clear evidence proving that the tensile strength has an influence on the wear performance. So the different tribological performance of the three weave structures of fabric composites may be attributed to the different PTFE proportions in the fabric surface and the different wear mechanisms. The fabric composites are divided into three regions: the lubrication region, the reinforced region and the bonding region. The major mechanisms are fatigue wear and the shear effects of the friction force in the lubrication region. In the reinforced region fiber-matrix de-bonding and fiber breakage are involved. The proposed research proposes a regional wear model and further indicates the wear process and the wear mechanism of fabric composites.展开更多
The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understa...The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understand the effect in hybridization within metal/synthetic fibre composite, synthetic/synthetic fibre composite and nature/synthetic fibre composite as energy absorption tube, which reflects on the energy absorption characteristics and crashworthiness behaviors in previous the study. By way of instance, a wide range of methodology and particular parameter in previous study such as the effect in fibre arrangement, matrix polymer, technique of fabrication, fibre treatment(natural fibre), design in geometry/cross-section and others mechanism of hybrid fibre composite tube are highlighted which to comprehend the capability of the mechanical performance and collapsible behavior as sacrificial structure in high-performance structure applications. Moreover, in the recently studies there have been many of the research regarding structural materials as energy absorption tube has been introduced such as metal/matrix composites, new alloy metals and polymer composites which intended to evaluate the performance of these materials into circumstance in loading and impact characteristic. Therefore, this review article is trying to explore the research articles related to the effect of hybridization fibres and thermoset polymer as reinforcement for energy absorption tube research and expected would provide an information and idea which to expend the knowledge in future study of hybridization effect for energy absorption tube, moreover the development for future potential as new hybrid composite fibre materials from the natural/synthetic fibres reinforced composite material in employing of high-performance energy absorption tube application is still less discover and highlighted.展开更多
The Kevlar/polytetrafluroethylene(Kevlar/PTFE) fabric composite can be used as a self-lubricating liner of the self-lubricating bearing.Many types of nano-particles can improve the tribological performance of the po...The Kevlar/polytetrafluroethylene(Kevlar/PTFE) fabric composite can be used as a self-lubricating liner of the self-lubricating bearing.Many types of nano-particles can improve the tribological performance of the polymer-based composite.Unfortunately,up to now,published work on the effect of nano-particles on the tribological performance of the fabric composite which can be used as a self-lubricating liner is quite scarce.Therefore,for the purpose of exploring a way to significantly improve the tribological performance of the fabric composite,the tribological performance of the Kevlar/PTFE fabric composite filled with nano-titania is evaluated by using the block-on-ring wear tester.The scanning electron microscopy is utilized to observe the morphologies of worn surfaces of the fabric composites and the counterparts.The tensile properties of the composites are evaluated on the universal material testing machine.The test results show that the addition of nano-titania at a proper mass fraction of the matrix resin improves the wear resistance and the tensile strength,decreases the friction coefficient,and makes the wear volume of the composite reach a relative steady state more quickly;plastic deformation and microcutting are important for the wear of the fabric composite;a lubricating layer is formed on the worn surface of the composite during sliding,and the lubricating layer is critical for the tribological performance of the composite;the formation and properties of the lubricating layer are influenced by the nano-titania particles.The proposed study on the effect of nano-titania on the tribological performance of the Kevlar/PTFE fabric composite,especially on the evolution of the worn surface of the composite,provides the basis for further understanding of the influence mechanism of the nano-particles on the tribological performance of the composite and explores a method of improving the tribological performance of the composite.展开更多
A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size an...A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.展开更多
A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Micro...A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Microstructural characterization reveals a more homogeneous dispersion of GNPs in the Al matrix as compared to CNTs. Dislocation blockade by SiC and GNP particles along with the defect-free interface between the matrix and reinforcements is also observed. Nanoindentation study reveals a remarkable ~207% and ~27% increment in surface nano-hardness of Al-SiC-GNP and Al-SiC-CNT hybrid composite compared to as-received Al6061 alloy, respectively. On the other hand, the microhardness values of Al-SiC-GNP and Al-SiC-CNT are increased by ~36% and ~17% relative to as-received Al6061 alloy, respectively. Tribological assessment reveals ~56% decrease in the specific wear rate of Al-SiC-GNP hybrid composite, whereas it is increased by ~122% in Al-SiC-CNT composite. The higher strength of Al-SiC-GNP composite is attributed to the mechanical exfoliation of GNPs to few layered graphene (FLG) in the presence of SiC. Also, various mechanisms such as thermal mismatch, grain refinement, and Orowan looping contribute significantly towards the strengthening of composites. Moreover, the formation of tribolayer by the squeezed-out GNP on the surface is responsible for the improved tribological performance of the composites. Raman spectroscopy and various other characterization methods corroborate the results.展开更多
基金supported by the National Natural Science Fund of China(Nos.90606011 and 50472038)Ph.D.Program Foundation of Ministry of Education of China(No.20070255012)+3 种基金Shanghai Leading Academic Discipline Project(No.B603)the Program of Introducing Talents of Discipline to Universities(No.111-2- 04)Open Project of the State Key Laboratory of Crystal Materials(No.KF0809)Youth Scientific Research Fund of Anhui University and the Excellent Youth Fund in University of Anhui Province(No.2008jq1020)
文摘A novel polyhedral oligomeric silsesquioxane(POSS)-based organic-inorganic hybrid nanocomposite(EF-POSS) was prepared by Pt-catalyzed hydrosilylation reaction of octahydridosilsesquioxane(T_8H_8,POSS) with a luminescent substituted acetylene(2- ethynyl-7-(4-(4-methylstyryl)styryl)-9,9-dioctyl-9H-fluorene(EF)) in high yield.The hybrid nanocomposite was soluble in common solvents such as CH_2Cl_2,CHCl_3,THF and 1,4-dioxane.Its structure and property were characterized by FTIR, NMR,TGA,UV and PL,respectively.The results show that the hybrid nanocomposite with high thermal stability emits stable blue light as a result of photo excitation and possesses high photoluminescence quantum efficiency(φ_(FL)).
文摘Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
文摘Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research effort aims to develop novel hybrid composites based on AA 2014 alloy through the use of liquid metallurgy stir casting to reinforce dual ceramic particles of Zirconium Diboride(ZrB_(2))and Boron Carbide(B4C).The weight percentage(wt%)of ZrB_(2) was varied(0,5,10,and 15),while a constant 5 wt%of B4C was maintained during this fabrication.The as-cast samples have been assessed using an Optical Microscope(OM)and a Scanning Electron Microscope(SEM)with Energy Dispersive Spectroscopy(EDS).The properties such as hardness,tensile strength,and wear characteristics of stir cast specimens were assessed to examine the impact of varying weight percentages of reinforcements in AA 2014 alloy.In particular,dry sliding wear behaviour was evaluated considering varied loads using a pin-on-disc tribotester.As the weight%of ZrB_(2) grew and B4C was incorporated,hybrid composites showed higher hardness,tensile strength,and wear resistance.Notably,the incorporation of a cumulative reinforcement consisting of 15 wt%ZrB_(2) and 5 wt%B4C resulted in a significant 31.86%increase in hardness and a 44.1%increase in tensile strength compared to AA 2014 alloy.In addition,it has been detected that wear resistance of hybrid composite pin(containing 20 wt%cumulative reinforcement)is higher than that of other stir cast wear test pins during the whole range of applied loads.Fractured surfaces of tensile specimens showed ductile fracture in the AA 2014 matrix and mixed mode for hybrid composites.Worn surfaces obtained employing higher applied load indicated abrasive wear with little plastic deformation for hybrid composites and dominant adhesive wear for matrix alloy.Hence,the superior mechanical and tribological performance of hybrid composites can be attributed to dual reinforcement particles being dispersed well and the effective transmission of load at this specific composition.
基金the Key Projects of Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China (No.6140922010201)the Key R&D Plan of Zhenjiang in 2018(No.GY2018021)。
文摘The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively.
文摘Composite materials from oil palmfiber enhance sustainability by utilizing renewable resources,reducing depen-dence on non-renewable materials,and lessening environmental impact.Despite their mechanical and dimen-sional stability limitations,oil palmfiber-based polymer composites offer significant advantages,such as natural abundance,potential weight reduction,and cost-effectiveness due to local availability and renewability.The growing interest in oil palm hybrid composites,made from blending differentfibers,is due to their custo-mizable mechanical and physical properties.Hybridization is one of the most effective methods to reinforce and improve the performance of oil palm-derived composite materials.This review investigates the structural qualities of hybrid composites made from oil palmfibers,their suitability for diverse applications,and recent advancements in thefield.By focusing on the availability,properties,applications,challenges,and future direc-tions of oil palmfiber hybrid composites,this review highlights the potential of these materials to enhance mechanical and functional properties,thereby contributing to sustainable development and innovation in com-posite materials.
文摘Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptability to a wide variety of goods.However,the major difficulties of using thesefibres are their existing poor dimensional stability and the extreme hydrophilicity.In assessing the mechanical properties(MP)of composites,the interfacial bonding(IB)happening between the NFR and the polymer matrix(PM)plays an incredibly significant role.When compared to NFR/syntheticfibre hybrid composites,hybrid composites(HC)made up of two separate NFR are less prevalent;yet,these hybrid composites also have the potential to be valuable materials in terms of environmental issues.A new dimension to theflexibility of composites reinforced with NFR is added by the cost-effective manufacture of hybrid composites utilising NFR.The purpose of this study is to offer an over-view of the keyfindings that were presented on hybrid composites.The emphasis was focused on the factors that influence the performance of the naturalfiber composites,diverse approaches to enhancing MP,physical,electri-cal,and thermal characteristics of the HC.HC study in polymer science gains interest for applications in con-struction and automotive industries.
文摘The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusion of engineered fiber is one of the promising methods to not only enhanced the mechanical performance but also suppressed the drawbacks that associate with such plant-based fiber to some extent. A usual hand lay-up method was taken-up in this work to fabricate four layered of hybrid kenaf(K)/glass(G)polyester laminates with different stacking order such as KKKK,KGKG,KGGK,GKKG and GGGG. The erosive character of the laminates was examined under three distinct particle velocities(48m/s, 70m/s,82m/s)and four different impact angles(30°, 45°, 60°, 90°). All fabricated laminates exhibited a semiductile character at lower velocities(48m/s and70m/s)as peak wear rate was observed at45° impact angle. However,they showed a semi-brittle character at high velocity(82m/s)as maximum rate of erosion was noticed at60° impact angle. Again,the influence of stacking order of piles on erosion wear was also clearly noticed. Moreover,the semi-brittle/semi-ductile characterization was also evidenced in accordance to the range of erosion efficiencies. The micro-structures of worn surfaces were inspected thoroughly from the images of scanning electron microscope(SEM)to evident the mechanism of erosion.
文摘Modern technology for developing new items made from renewable resources is becoming more and more popular as a result of rising environmental concern.Recently,contemporary polymer composites have included the hybridization of natural fibers with synthetic ones,along with the inclusion of a variety of biowaste filler for developing sustainable goods.In this work,the kenaf/glass hybrid polyester composites are strengthened by the addition of fish scale(FS),which is taken from the fishs outermost layer of skin.Five different stacked-order laminates,such as KKKK,KGKG,GKKG,KGGK,and GGGG,are fabricated by using the hand lay-up method with four different weight concentrations of filler content:0%,5%,10%,and 15%.Mechanical possessions such as tensile,flexural,impact strength and micro-hardness have been evaluated through experimentation in accordance with ASTM standards.The experimental findings revealed that,the tensile strength and micro-hardness value of KGKG laminates with 15wt% of FS filler are found to be maximum of 118.72 MPa and 17.82 HV respectively which are 39.67%and 26.11%greater than that of KGKG laminates without FS filler.However,the flexural and impact strength of same laminates with 10 wt% FS filler exhibited a maximum value of 142.77 MPa and 62.08 kJ/m^(2).In order to corroborate its applicability for structural and building materials in open environment,the dimensional stability of the composite has been studied through moisture absorption test.The influences of FS filler loading on dimensional stability and resistance to moisture absorption capacity of laminates are also investigated.The experimental results reflected that the addition of FS-filler has significantly improved the dimensional stability of the laminates in moist environment by reducing the moisture absorption tendency.To further support the mode of failures,a fractography investigation of fractured surfaces was conducted.
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
基金National Natural Science Foundation of China(No.51875099)。
文摘Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
文摘Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.
基金Project(51404038)supported by the National Natural Science Foundation of China
文摘Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.
文摘Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation displayed that the Sip-SiCp/Al hybrid composites with bilayer structure were compact without gas pores and the intergradation between Sip/Al layer and SiCp/Al layer was homogeneous and continuous. Further investigation revealed that the Sip-SiCp/Al hybrid composites possessed low density (2.96 g/cm^3), high gas tightness (1.0 mPa·cm^3)/s), excellent thermal management function as a result of high thermal conductivity (194 W/(m·K) and low coefficient of thermal expansion (7.0×10^-6 K-1). Additionally, Sip-SiCp/Al hybrid composites had outstanding laser welding adaptability, which is significantly important for electronic packaging applications. The gas tightness of components after laser welding (48 mPa·cm^3)/s) can well match the requirement of advanced electronic packaging. Several kinds of these precision components passed tests and were put into production.
基金supported by National Defense Foundation of China
文摘The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive modification, and performing fiber surface modification. As fabric composites, the weave structures play an important role in the mechanical and tribological performances of the liners. However, hardly any literature is available on the friction and wear behavior of such composites with different weave structures. In this paper, three weave structures (plain, twill 1/3 and satin 8/5) of hybrid Kevlar/PTFE fabric composites are selected and pin-on-flat linear reciprocating wear studies are done on a CETR tester under different pressures and different frequencies. The relationship between the tensile strength and the wear performance are studied. The morphologies of the worn surfaces under the typical test conditions are analyzed by means of scanning electron microscopy (SEM). The analysis results show that at 10 MPa, satin 8/5 performs the best in friction-reduction and antiwear performance, and plain is the worst. At 30 MPa, however, the antiwear performance is reversed and satin 8/5 does not even complete the 2 h wear test at 16 Hz. There is no clear evidence proving that the tensile strength has an influence on the wear performance. So the different tribological performance of the three weave structures of fabric composites may be attributed to the different PTFE proportions in the fabric surface and the different wear mechanisms. The fabric composites are divided into three regions: the lubrication region, the reinforced region and the bonding region. The major mechanisms are fatigue wear and the shear effects of the friction force in the lubrication region. In the reinforced region fiber-matrix de-bonding and fiber breakage are involved. The proposed research proposes a regional wear model and further indicates the wear process and the wear mechanism of fabric composites.
基金Universiti Putra Malaysia for financial support via the Graduate Research Fellowship (GRF) scholarship through the School of Graduate Study (UPM/SPS/ GS47054) for providing a scholarship to the principal author to carry out this research projectHiCOE grant (6369107) from Ministry of Higher Education Malaysia
文摘The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understand the effect in hybridization within metal/synthetic fibre composite, synthetic/synthetic fibre composite and nature/synthetic fibre composite as energy absorption tube, which reflects on the energy absorption characteristics and crashworthiness behaviors in previous the study. By way of instance, a wide range of methodology and particular parameter in previous study such as the effect in fibre arrangement, matrix polymer, technique of fabrication, fibre treatment(natural fibre), design in geometry/cross-section and others mechanism of hybrid fibre composite tube are highlighted which to comprehend the capability of the mechanical performance and collapsible behavior as sacrificial structure in high-performance structure applications. Moreover, in the recently studies there have been many of the research regarding structural materials as energy absorption tube has been introduced such as metal/matrix composites, new alloy metals and polymer composites which intended to evaluate the performance of these materials into circumstance in loading and impact characteristic. Therefore, this review article is trying to explore the research articles related to the effect of hybridization fibres and thermoset polymer as reinforcement for energy absorption tube research and expected would provide an information and idea which to expend the knowledge in future study of hybridization effect for energy absorption tube, moreover the development for future potential as new hybrid composite fibre materials from the natural/synthetic fibres reinforced composite material in employing of high-performance energy absorption tube application is still less discover and highlighted.
文摘The Kevlar/polytetrafluroethylene(Kevlar/PTFE) fabric composite can be used as a self-lubricating liner of the self-lubricating bearing.Many types of nano-particles can improve the tribological performance of the polymer-based composite.Unfortunately,up to now,published work on the effect of nano-particles on the tribological performance of the fabric composite which can be used as a self-lubricating liner is quite scarce.Therefore,for the purpose of exploring a way to significantly improve the tribological performance of the fabric composite,the tribological performance of the Kevlar/PTFE fabric composite filled with nano-titania is evaluated by using the block-on-ring wear tester.The scanning electron microscopy is utilized to observe the morphologies of worn surfaces of the fabric composites and the counterparts.The tensile properties of the composites are evaluated on the universal material testing machine.The test results show that the addition of nano-titania at a proper mass fraction of the matrix resin improves the wear resistance and the tensile strength,decreases the friction coefficient,and makes the wear volume of the composite reach a relative steady state more quickly;plastic deformation and microcutting are important for the wear of the fabric composite;a lubricating layer is formed on the worn surface of the composite during sliding,and the lubricating layer is critical for the tribological performance of the composite;the formation and properties of the lubricating layer are influenced by the nano-titania particles.The proposed study on the effect of nano-titania on the tribological performance of the Kevlar/PTFE fabric composite,especially on the evolution of the worn surface of the composite,provides the basis for further understanding of the influence mechanism of the nano-particles on the tribological performance of the composite and explores a method of improving the tribological performance of the composite.
基金Supported by the National "863" Project (No. 2001 AA 320206)and Shanghai Nano Special Foundation(No. 0120nm034).
文摘A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.
文摘A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Microstructural characterization reveals a more homogeneous dispersion of GNPs in the Al matrix as compared to CNTs. Dislocation blockade by SiC and GNP particles along with the defect-free interface between the matrix and reinforcements is also observed. Nanoindentation study reveals a remarkable ~207% and ~27% increment in surface nano-hardness of Al-SiC-GNP and Al-SiC-CNT hybrid composite compared to as-received Al6061 alloy, respectively. On the other hand, the microhardness values of Al-SiC-GNP and Al-SiC-CNT are increased by ~36% and ~17% relative to as-received Al6061 alloy, respectively. Tribological assessment reveals ~56% decrease in the specific wear rate of Al-SiC-GNP hybrid composite, whereas it is increased by ~122% in Al-SiC-CNT composite. The higher strength of Al-SiC-GNP composite is attributed to the mechanical exfoliation of GNPs to few layered graphene (FLG) in the presence of SiC. Also, various mechanisms such as thermal mismatch, grain refinement, and Orowan looping contribute significantly towards the strengthening of composites. Moreover, the formation of tribolayer by the squeezed-out GNP on the surface is responsible for the improved tribological performance of the composites. Raman spectroscopy and various other characterization methods corroborate the results.