期刊文献+
共找到22,231篇文章
< 1 2 250 >
每页显示 20 50 100
The Negative Thermal Expansion Property of NdMnO_(3) Based on Pores Effect and Phase Transition
1
作者 李玉成 张扬 +2 位作者 ZHANG Muqun DUAN Rong LIU Xiteng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期39-43,共5页
A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were in... A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments. 展开更多
关键词 negative thermal expansion NdMnO_(3) pores effect phase transition
下载PDF
Free radicals trigger the closure of open pores in lignin-derived hard carbons toward improved sodium-storage capacity
2
作者 Wen-Jun Ji Zong-Lin Yi +8 位作者 Ming-Xin Song Xiao-Qian Guo Yi-Lin Wang Yi-Xuan Mao Fang-Yuan Su Jing-Peng Chen Xian-Xian Wei Li-Jing Xie Cheng-Meng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期551-559,共9页
The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming ag... The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors. 展开更多
关键词 Hard carbon Chemical activation Free radical SELF-HEALING Closed pores Sodium ion batteries
下载PDF
Maceral evolution of lacustrine shale and its effects on the development of organic pores during low mature to high mature stage:A case study from the Qingshankou Formation in northern Songliao Basin,northeast China 被引量:1
3
作者 Liu Wang Bo Liu +4 位作者 Long-Hui Bai Mehdi Ostadhassan Thomas Gentzis Bo-Yang Wang Yi-Zhang Wang 《Petroleum Science》 SCIE EI CSCD 2023年第5期2709-2725,共17页
Organic matter(OM)hosted pores are crucial for the storage and migration of petroleum in shale reservoirs.Thermal maturity and macerals type are important factors controlling the development of pores therein.In this s... Organic matter(OM)hosted pores are crucial for the storage and migration of petroleum in shale reservoirs.Thermal maturity and macerals type are important factors controlling the development of pores therein.In this study,six lacustrine shale samples with different thermal maturities from the first member of the Qingshankou Formation in the Songliao Basin,of which vitrinite reflectance(R_(o))ranging from 0.58% to 1.43%,were selected for a comparative analysis.Scanning electron microscopy(SEM)and reflected light microscopy were combined to investigate the development of organic pores in different macerals during thermal maturation.The results show that alginite and liptodetrinite are the dominant primary macerals,followed by bituminite.Only a few primary organic pores developed in the alginite at the lowest maturity(R_(o)=0.58%).As a result of petroleum generation,oil-prone macerals began to transform to initial-oil solid bitumen at the early oil window(R_(o)=0.73%)and shrinkage cracks were observed.Initial-oil solid bitumen cracked to oil,gas and post-oil bitumen by primary cracking(R_(o)=0.98%).Moreover,solid bitumen(SB)was found to be the dominant OM when R_(o)>0.98%,which indicates that SB is the product of oil-prone macerals transformation.Many secondary bubble pores were observed on SB,which formed by gas release,while devolatilization cracks developed on migrated SB.Additionally,at the late oil window(Ro?1.16%),migrated SB filled the interparticle pore spaces.With further increase in temperature,the liquid oil underwent secondary cracking into pyrobitumen and gas,and spongy pores developed on the pyrobitumen at higher levels of maturity(Ro=1.43%),which formed when pyrobitumen cracked into gas.Vitrinite and inertinite are stable without any visible pores over the range of maturities,verifying their low petroleum generation potential.In addition,it was concluded that clay minerals could have a catalytic effect on the petroleum generation,which may explain why organicclay mixtures had more abundant pores than single OM particles.However,after R_(o)>0.98%,authigenic minerals occupied the organic pore spaces on the organic-clay mixtures,resulting in fewer pores compared to those observed in samples at the early to peak oil window. 展开更多
关键词 Lacustrine shale Maceral evolution Organic pores Scanning electron microscopy Reflected light microscopy
下载PDF
Preparation of Chiral Silica Nanostructures with Radial Pores through Single-templating Approach
4
作者 ZHA Xinlin FAN Hui CHEN Yuanli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1293-1298,共6页
A chiral low-molecular-weight gelator(LMWG) L-16Ala5PyPF6 was synthesized from L-alanine, which can cause physical gel in n-propanol, ethyl acetate, butylene oxide, water, benzene, 1,4-dioxane and chloroform. The sol-... A chiral low-molecular-weight gelator(LMWG) L-16Ala5PyPF6 was synthesized from L-alanine, which can cause physical gel in n-propanol, ethyl acetate, butylene oxide, water, benzene, 1,4-dioxane and chloroform. The sol-gel reactions were carried out in a mixture of stronger ammonia water and n-propanol at the volume ratio of 2:8. Single-handed twisted silica nanostructures with pore channels vertical to the wall surfaces were first prepared through a single-templating approach comparing with the reported double template method. The formation mechanism of radial pore structure was studied by transmission electron microscopy at different reaction time intervals, which indicated that the radial pore structure was formed via a structural transition in the sol-gel transcription process. 展开更多
关键词 sol-gel preparation radial pores vertical pore channels single-handed structural transition
下载PDF
Organic matter pores in the chang 7 lacustrine shales from the Ordos Basin and its effect on reflectance measurement
5
作者 Peng Pang Hui Han +7 位作者 Xiu-Cheng Tan Shi-Meng Ren Chen Guo Lin Xie Ling-Li Zheng Hai-Hua Zhu Yuan Gao Yun-Hui Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期60-86,共27页
To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales,macerals were effectively identified according to their optical and morphological characteristics,and the nanoscale pore structure ... To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales,macerals were effectively identified according to their optical and morphological characteristics,and the nanoscale pore structure of macerals was observed by scanning electron microscope.Meanwhile,the reflectances of different positions in the same pieces of vitrinite or solid bitumen with heterogeneous pores development were measured.The results showed that the average contents of sapropelinite,liptinite,vitrinite,inertinite and solid bitumen are 42.7%,8.7%,13.6%,13.8% and 21.2%,respectively,which suggests that the source of the organic matter of the Chang 7 shales is a mixed source input.The organic pores of Chang 7 shales are enriched,and the pore shapes are mostly round or elliptical.The pore size of organic pores has a wide distribution,mainly concentrate in the range of 100-400 nm,and the average plane porosity of organic pores is 10.13%.The size order of the organic pores in various macerals is:solid bitumen<bituminite<alginite<vitrinite<fusinite<liptinite.The abundance order of organic matter pores of each maceral is as follows:alginite>fusinite>bituminite>solid bitumen>vitrinite>liptinite.OM pores are mainly contributed by bituminite,solid bitumen and fusinite.The plane porosity of bituminite increases with maturity.In the process of thermal evolution,the plane porosity of fusinite is distributed in the two ranges of 20%-28% and 1%-7%.The former is mainly the primary pores of the fusinite itself,and the latter is the secondary pores formed in the thermal evolution.As for the organic pores of other macerals,no obvious thermal evolution law was found.Meanwhile,the surface imperfections of vitrinite or solid bitumen is enhanced by the enrichment of organic pores(an increase in pore size or pore number),which may result in the underestimation of their reflectances. 展开更多
关键词 Ordos Basin Chang 7 member OM pore MACERALS Differential developmental characteristics Reflectance
下载PDF
Types and microstructures of pores in shales of the Ordovician Wulalike Formation at the western margin of the Ordos Basin, China
6
作者 Wuling Mo Min Wang +6 位作者 Fangwen Chen Zhengliang Huang Ying Li Yu Yan Ren Jiang Tong Lin Junfeng Cui 《Energy Geoscience》 2023年第3期100-112,共13页
Shale samples from the Ordovician Wulalike Formation at the western margin of the Ordos Basin are studied to define the types, microstructures and connectivity of pores as well as the relationships between the pore st... Shale samples from the Ordovician Wulalike Formation at the western margin of the Ordos Basin are studied to define the types, microstructures and connectivity of pores as well as the relationships between the pore structures and gas content of the samples by using experimental techniques such as high-resolution field emission scanning electron microscopy (FESEM), mercury injection capillary pressure (MICP), low-temperature nitrogen adsorption (LTNA), CO_(2) adsorption, and focused ion beam scanning electron microscopy (FIB-SEM). The results show that the shale has 10 different lithofacies, typical mixed sedimentary characteristics, and poorly developed pores. The reservoir space mainly consists of intercrystalline pores, dissolution pores, intergranular pores, and micro-fissures, with organic pores occasionally visible. The pore size is mostly within 0.4–250 nm range but dominated by micropores and mesopores less than 20 nm, with pore numbers peaking at pore sizes of 0.5 nm, 0.6 nm, 0.82 nm, 3 nm, and 10 nm, respectively. The pores are poorly connected and macropores are rarely seen, which may explain the low porosity and low permeability of the samples. Samples with high content of organic matter and felsic minerals are potential reservoirs for oil and gas with their favorable physical properties and high connectivity. The pores less than 5 nm contribute significantly to the specific surface area and serve as important storage space for adsorbed gas. 展开更多
关键词 SHALE pore type Microstructure ORDOVICIAN Ordos Basin
下载PDF
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
7
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 Low permeability porous media Water-oil flow WETTABILITY pore structures Dual porosity pore network model(PNM) Free surface model
下载PDF
Hydrodynamic resistance of pore–throat structures and its effect on shale oil apparent permeability
8
作者 Wendong Wang Qian Zhang +3 位作者 Jilong Xu Da Zheng Lifeng Liu Yuliang Su 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期101-110,共10页
Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–t... Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated. 展开更多
关键词 pore–throat structure Hydrodynamic resistance Apparent permeability REV-scale Shale oil
下载PDF
Experimental investigation on coal pore-fracture variation and fractal characteristics synergistically affected by solvents for improving clean gas extraction
9
作者 Feilin Han Sheng Xue +3 位作者 Chunshan Zheng Zhongwei Chen Guofu Li Bingyou Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期413-425,共13页
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal... Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology. 展开更多
关键词 Clean gas extraction Chemical solvent Experimental investigation Fractal characteristics pore fracture
下载PDF
A hybrid machine learning optimization algorithm for multivariable pore pressure prediction
10
作者 Song Deng Hao-Yu Pan +8 位作者 Hai-Ge Wang Shou-Kun Xu Xiao-Peng Yan Chao-Wei Li Ming-Guo Peng Hao-Ping Peng Lin Shi Meng Cui Fei Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期535-550,共16页
Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when f... Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when forming particular structures and lithology.In this paper,a machine learning algorithm and effective stress theorem are used to establish the transformation model between rock physical parameters and pore pressure.This study collects data from three wells.Well 1 had 881 data sets for model training,and Wells 2 and 3 had 538 and 464 data sets for model testing.In this paper,support vector machine(SVM),random forest(RF),extreme gradient boosting(XGB),and multilayer perceptron(MLP)are selected as the machine learning algorithms for pore pressure modeling.In addition,this paper uses the grey wolf optimization(GWO)algorithm,particle swarm optimization(PSO)algorithm,sparrow search algorithm(SSA),and bat algorithm(BA)to establish a hybrid machine learning optimization algorithm,and proposes an improved grey wolf optimization(IGWO)algorithm.The IGWO-MLP model obtained the minimum root mean square error(RMSE)by using the 5-fold cross-validation method for the training data.For the pore pressure data in Well 2 and Well 3,the coefficients of determination(R^(2))of SVM,RF,XGB,and MLP are 0.9930 and 0.9446,0.9943 and 0.9472,0.9945 and 0.9488,0.9949 and 0.9574.MLP achieves optimal performance on both training and test data,and the MLP model shows a high degree of generalization.It indicates that the IGWO-MLP is an excellent predictor of pore pressure and can be used to predict pore pressure. 展开更多
关键词 pore pressure Grey wolf optimization Multilayer perceptron Effective stress Machine learning
下载PDF
Effects of confining pressure and pore pressure on multipole borehole acoustic field in fluid-saturated porous media
11
作者 赵志强 刘金霞 +1 位作者 刘建宇 崔志文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期468-476,共9页
In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated por... In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media. 展开更多
关键词 confining pressure pore pressure fluid-saturated porous media multipole borehole acoustic field
下载PDF
A novel box-counting method for quantitative fractal analysis of threedimensional pore characteristics in sandstone
12
作者 Huiqing Liu Heping Xie +2 位作者 Fei Wu Cunbao Li Renbo Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期479-489,共11页
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi... Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks. 展开更多
关键词 3D fractal analysis Fractal dimension Rock pore structure Box-counting method Permeability simulation Computational geosciences
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis
13
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
An adaptive physics-informed deep learning method for pore pressure prediction using seismic data
14
作者 Xin Zhang Yun-Hu Lu +2 位作者 Yan Jin Mian Chen Bo Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期885-902,共18页
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g... Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data. 展开更多
关键词 pore pressure prediction Seismic data 1D convolution pyramid pooling Adaptive physics-informed loss function High generalization capability
下载PDF
Prediction of the Pore-Pressure Built-Up and Temperature of Fire-Loaded Concrete with Pix2Pix
15
作者 Xueya Wang Yiming Zhang +1 位作者 Qi Liu Huanran Wang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2907-2922,共16页
Concrete subjected to fire loads is susceptible to explosive spalling, which can lead to the exposure of reinforcingsteel bars to the fire, substantially jeopardizing the structural safety and stability. The spalling ... Concrete subjected to fire loads is susceptible to explosive spalling, which can lead to the exposure of reinforcingsteel bars to the fire, substantially jeopardizing the structural safety and stability. The spalling of fire-loaded concreteis closely related to the evolution of pore pressure and temperature. Conventional analytical methods involve theresolution of complex, strongly coupled multifield equations, necessitating significant computational efforts. Torapidly and accurately obtain the distributions of pore-pressure and temperature, the Pix2Pix model is adoptedin this work, which is celebrated for its capabilities in image generation. The open-source dataset used hereinfeatures RGB images we generated using a sophisticated coupled model, while the grayscale images encapsulate the15 principal variables influencing spalling. After conducting a series of tests with different layers configurations,activation functions and loss functions, the Pix2Pix model suitable for assessing the spalling risk of fire-loadedconcrete has been meticulously designed and trained. The applicability and reliability of the Pix2Pix model inconcrete parameter prediction are verified by comparing its outcomes with those derived fromthe strong couplingTHC model. Notably, for the practical engineering applications, our findings indicate that utilizing monochromeimages as the initial target for analysis yields more dependable results. This work not only offers valuable insightsfor civil engineers specializing in concrete structures but also establishes a robust methodological approach forresearchers seeking to create similar predictive models. 展开更多
关键词 Fire loaded concrete spalling risk pore pressure generative adversarial network(GAN) Pix2Pix
下载PDF
Research on Multi-Wave Pore Pressure Prediction Method Based on Three Field Velocity Fusion
16
作者 Junlin Zhang Huan Wan +2 位作者 Yu Zhang Yumei He Linlin Dan 《Journal of Geoscience and Environment Protection》 2024年第6期269-278,共10页
The optimization of velocity field is the core issue in reservoir seismic pressure prediction. For a long time, the seismic processing velocity analysis method has been used in the establishment of pressure prediction... The optimization of velocity field is the core issue in reservoir seismic pressure prediction. For a long time, the seismic processing velocity analysis method has been used in the establishment of pressure prediction velocity field, which has a long research period and low resolution and restricts the accuracy of seismic pressure prediction;This paper proposed for the first time the use of machine learning algorithms, based on the feasibility analysis of wellbore logging pressure prediction, to integrate the CVI velocity inversion field, velocity sensitive post stack attribute field, and AVO P-wave and S-wave velocity reflectivity to obtain high-precision seismic P and S wave velocities. On this basis, high-resolution formation pore pressure and other parameters prediction based on multi waves is carried out. The pressure prediction accuracy is improved by more than 50% compared to the P-wave resolution of pore pressure prediction using only root mean square velocity. Practice has proven that the research method has certain reference significance for reservoir pore pressure prediction. 展开更多
关键词 Velocity Field RESOLUTION Machine Learning AVO Inversion pore Pressure
下载PDF
The effects of clay minerals and organic matter on nanoscale pores in Lower Paleozoic shale gas reservoirs, Guizhou, China 被引量:2
17
作者 Yuantao Gu Quan Wan +2 位作者 Wenbin Yu Xiaoxia Li Zhongbin Yu 《Acta Geochimica》 EI CAS CSCD 2018年第6期791-804,共14页
In organic-rich gas shales, clay minerals and organic matter(OM) have significant influences on the origin, preservation, and production of shale gas. Because of the substantial role of nanoscale pores in the generati... In organic-rich gas shales, clay minerals and organic matter(OM) have significant influences on the origin, preservation, and production of shale gas. Because of the substantial role of nanoscale pores in the generation,storage, and seepage of shale gas, we examined the effects of clay minerals and OM on nanoscale pore distribution characteristics in Lower Paleozoic shale gas reservoirs.Using the Niutitang and Longmaxi shales as examples, we determined the effects of clay minerals and OM on pores through sedimentation experiments. Field emission–scanning electron microscopy combined with low-pressure N2 adsorption of the samples before and after sedimentation showed significant differences in pore location and pore size distribution between the Niutitang and Longmaxi shales. Nanoscale pores mostly existed in OM in the Longmaxi shale and in clay minerals or OM–clay composites in the Niutitang shale. The distribution differences were attributed largely to variability in thermal evolution and tectonic development and might account for the difference in gas-bearing capacity between the Niutitang and Longmaxi reservoirs. In the nanoscale range, mesopores accounted for 61–76% of total nanoscale pore volume.Considerably developed nanoscale pores in OM were distributed in a broad size range in the Longmaxi shale, which led to good pore connectivity and gas production.Numerous narrow pores(i.e., pores \ 20 nm) in OM–clay composites were found in the Niutitang shale, and might account for this shale's poor pore connectivity and low gas production efficiency. Enhancing the connectivity of the mesopores(especially pores \ 20 nm and those developed in OM–clay composites) might be the key to improving development of the Niutitang shale. The findings provide new insight into the formation and evolutionary mechanism of nanoscale pores developed in OM and clay minerals. 展开更多
关键词 NANOSCALE pore CLAY MINERALS Organic matter OM-clay composites pore distribution characteristics pore connectivity
下载PDF
Geochemistry, Paleoenvironment and Mechanism of Organic-Matter Enrichment in the Lower Silurian Longmaxi Formation Shale in the Sichuan Basin, China 被引量:7
18
作者 CHEN Zhipeng CUI Junping +4 位作者 REN Zhanli JIANG Shu LIANG Xing WANG Gaocheng ZOU Chen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第3期505-519,共15页
To investigate the mechanism of the organic-matter enrichment in the Lower Longmaxi Formation shale,the geochemistry and total organic carbon(TOC)of the Longmaxi Formation black shales in the Jiaoshiba,Zhaotong,and We... To investigate the mechanism of the organic-matter enrichment in the Lower Longmaxi Formation shale,the geochemistry and total organic carbon(TOC)of the Longmaxi Formation black shales in the Jiaoshiba,Zhaotong,and Weiyuan areas of the Sichuan Basin were analyzed.Paleoproductivity proxy parameters(Babio,Siex,and Ni/Al),clastic influx proxies(TiO2 and Ti/Al),redox indices(V/Cr,Ni/Co,V/(V+Ni),and U/Th),and hydrothermal indicators(Fe,Mn,and Y concentrations;Fe/Ti ratio and a Ni-Zn-Co diagram)were employed to decipher the paleoenvironment of the Lower Longmaxi Formation shales.TiO2 and Ti/Al indicated low terrigenous detrital influx in all three areas.However,Babio,Siex,and Ni/Al indicated high productivity in the Jiaoshiba area.V/Cr,Ni/Co,and U/Th indicated higher oxygen content with larger fluctuations in the Zhaotong and Weiyuan areas.Fe,Mn,and Y concentrations and the Fe/Ti ratio implied greater active hydrothermal activity in the Weiyuan area.These heterogeneities were considered to be closely related to the paleoenvironment and paleogeography,and the large basement faults that developed during the Chuanzhong paleo-uplift could have provided vents for deep-hydrothermal-fluid upwelling.The redox indices(V/Cr,Ni/Co,and U/Th)and a paleoproductivity proxy(Ni/Al)displayed a significant correlation with the TOC,suggesting that both excellent preservation conditions and high paleoproductivity were the controlling factors for the enrichment of organic matter in the Longmaxi Formation shale.There was no obvious correlation between the clastic influx proxy(Ti/Al)and the TOC due to the extremely low supply of terrigenous debris.The hydrothermal indicator(Fe/Ti)was negatively correlated with the TOC in the Weiyuan area,indicating that hydrothermal activity may have played a negative role in the accumulation of organic matter.This study suggests that the enrichment of organic matter in the Longmaxi Formation marine shale varied according to the paleogeography and sedimentary environment. 展开更多
关键词 geochemical index organic-matter ENRICHMENT PALEOGEOGRAPHY hydrothermal fluid Sichuan Basin
下载PDF
Formation of layer-shaped pores in TiC-Fe cermet by combustion synthesis 被引量:4
19
作者 范群成 柴惠芬 金志浩 《中国有色金属学会会刊:英文版》 CSCD 2001年第5期760-763,共4页
To study the formation of layer shaped pores in TiC Fe cermet, two Ti C Fe powder compacts containing Ti powders with two size ranges (< 44μm and 135~ 154μm ) respectively were ignited in a special ignition mode... To study the formation of layer shaped pores in TiC Fe cermet, two Ti C Fe powder compacts containing Ti powders with two size ranges (< 44μm and 135~ 154μm ) respectively were ignited in a special ignition mode. The combustion temperatures of the reactions were measured, the phase constituents of the combustion synthesized products were inspected by X ray diffractometry (XRD), and the structures of the products were observed with scanning electron microscope (SEM). In the case of the finer Ti powder used, TiC Fe cermet and pore rank in an alternately laminar shape, and the shape of the pore is the same as that of the combustion wavefront, implying that the layer shaped pore results from a gather of the retained gas into the combustion wavefront. While in the case of the coarser Ti powder used, the lower combustion temperature causes the gather of the retained gas to be difficult, the pore being present in an arbitrary shape and distributing randomly. 展开更多
关键词 layer shaped pores TiC Fe combustion synthesis
下载PDF
Characterization of a Lacustrine Shale Reservoir and the Evolution of its Nanopores: A Case Study of the Upper Cretaceous Qingshankou Formation in the Songliao Basin, Northeastern China 被引量:3
20
作者 ZHANG Xu LIU Chenglin +5 位作者 LI Bing WU Linqiang GUI Herong WANG Ziling ZHANG Zhihui LIANG Dexiu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第2期337-351,共15页
The Songliao Basin is one of the most important petroliferous basins in northern China. With a recent gradual decline in conventional oil production in the basin, the exploration and development of unconventional reso... The Songliao Basin is one of the most important petroliferous basins in northern China. With a recent gradual decline in conventional oil production in the basin, the exploration and development of unconventional resources are becoming increasingly urgent. The Qingshankou Formation consists of typical Upper Cretaceous continental strata, and represents a promising and practical replacement resource for shale oil in the Songliao Basin. Previous studies have shown that low-mature to mature Qingshankou shale mainly preserves type Ⅰ and type Ⅱ1 organic matter, with relatively high total organic carbon(TOC) content. It is estimated that there is a great potential to explore for shale oil resources in the Qingshankou Formation in this basin. However, not enough systematic research has been conducted on pore characteristics and their main controlling factors in this lacustrine shale reservoir. In this study, 19 Qingshankou shales from two wells drilled in the study area were tested and analyzed for mineral composition, pore distribution and feature evolution using Xray diffraction(XRD), scanning electron microscopy(SEM), low-pressure nitrogen gas adsorption(N2-GA), and thermal simulation experiments. The XRD results show that clay, quartz, and feldspar are the dominant mineral constituents of Qingshankou shale. The clay minerals are mostly illite/smectite mixed layers with a mean content of 83.5%, followed by illite, chlorite, and kaolinite. There are abundant deposits of clay-rich shale in the Qingshankou Formation in the study area, within which many mineral and organic matter pores were observed using SEM. Mineral pores contribute the most to shale porosity;specifically, clay mineral pores and carbonate pores comprise most of the mineral pores in the shale. Among the three types of organic matter pores, type B is more dominant the other two. Pores with diameters greater than 10 nm supply the main pore volume;most are half-open slits and wedge-shaped pores. The total pore volume had no obvious linear relationship with TOC content, but had some degree of positive correlation with the content of quartz + feldspar and clay minerals respectively. However, it was negatively correlated with carbonate mineral content. The specific surface area of the pores is negatively related to TOC content, average pore diameter, and carbonate mineral content. Moreover, it had a somewhat positive correlation with clay mineral content and no clear linear relationship with the content of quartz + feldspar. With increases in maturity, there was also an increase in the number of carbonate mineral dissolution pores and organic matter pores, average pore diameter, and pore volume, whereas there was a decrease in specific surface area of the pores. Generally, the Qingshankou shale is at a low-mature to mature stage with a TOC content of more than 1.0%, and could be as thick as 250 m in the study area. Pores with diameters of more than 10 nm are well-developed in the shale. This research illustrates that there are favorable conditions for shale oil occurrence and enrichment in the Qingshankou shale in the study area. 展开更多
关键词 LACUSTRINE SHALE pore structure pore EVOLUTION Upper Cretaceous Songliao Basin
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部