More efficient oxidation methods are needed to degrade especially newly emerging recalcitrant organic contaminants at low concentrations in the water environment. Reduced photonic efficiency of immobilized TiO2 is a m...More efficient oxidation methods are needed to degrade especially newly emerging recalcitrant organic contaminants at low concentrations in the water environment. Reduced photonic efficiency of immobilized TiO2 is a major challenge in TiO2-assisted advanced oxidation processes (AOP). Mineralization of 2,4-dichllorophenoxyacetic acid (2,4-D) in low aqueous solution by O3/UV/TiO2 using the world’s first high-strength TiO2 fiber was investigated and compared with O3, UV/TiO2, and O3/TiO2 in laboratory batch ex...展开更多
Herein,the application of a N-doped graphitic-carbon-coated iron nitride composite dispersed in a N-doped carbon framework(Fe_(3)N@NG/NC)is investigated as a heterogeneous electro-Fenton(HE-EF)catalyst for the efficie...Herein,the application of a N-doped graphitic-carbon-coated iron nitride composite dispersed in a N-doped carbon framework(Fe_(3)N@NG/NC)is investigated as a heterogeneous electro-Fenton(HE-EF)catalyst for the efficient removal of organics.The simultaneous carbonization and ammonia etching of iron-based metal organic framework(Fe-MOF)materials yielded well-dispersed N-doped carbon-coated Fe_(3)N nanoparticles with a diameter of~70 nm.The Fe_(3)N and pyridinic N endowed the composite with high HE-EF activity for decomposing the electrogenerated H_(2)O_(2) to•OH.The Fe_(3)N@NG/NC exhibited outstanding HE-EF performance in removing various organic pollutants with low iron leaching.A removal rate of 97-100%could be obtained for rhodamine B(RhB),dimethyl phthalate,methylene blue,and orange Ⅱ in 120 min at a pH of 5.0.When the solution pH was set to 3.0,5.0,7.0,and 9.0,the removal rate of RhB reached 100%,96%,92%,and 81%,respectively,in 60 min at an optimum voltage of 0.0 V(vs.reversible hydrogen electrode(RHE)).Moreover,the concentration of leached iron was expected to be below 0.03 mg/L in a wide pH range of 3.0-9.0.In addition,the RhB removal efficiency remained as high as 90%after six cycles in the reusability experiments.This work highlights the MOF-derived Fe_(3)N composite as an efficient HE-EF catalyst and the corresponding catalytic mechanism,which facilitates its application in wastewater treatment.展开更多
Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adso...Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adsorption and photocatalytic degradation process of methylene blue(MB)on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives.A possible adsorption‐photocatalytic degradation mechanism is proposed.The optimized 1M8G composite achieves 95%MB removal(60.8 mg/g)in 210 min and displays well recyclability over ten cycles.The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model.This study shed light on the design of MOFs based composites for water treatment.展开更多
The efficiency of the green inhibitors(sodium salts of fumarate,glycolate and gluconate)in suppressing corrosion of the structural MA8 magnesium alloy(Mg–Mn–Ce)and the biomedical Mg–0.8Ca alloy was studied using th...The efficiency of the green inhibitors(sodium salts of fumarate,glycolate and gluconate)in suppressing corrosion of the structural MA8 magnesium alloy(Mg–Mn–Ce)and the biomedical Mg–0.8Ca alloy was studied using the hydrogen evolution measurements,mass loss test,EIS,PDP,SVET/SIET.The analysis of the morphology,chemical composition,and growth kinetic of corrosion films formed in 0.9 wt%NaCl solution with and without corrosion inhibitors was carried out.The most compact surface film with the smallest thickness was formed in a saline solution with sodium fumarate.The Mg alloy samples exhibited the highest polarization resistance,the lowest localized electrochemical activity,and the lowest corrosion rate in saline with the addition of sodium fumarate and sodium glycolate.The efficiency of the applied inhibitors was up to 81%.The model of the corrosion mechanism based on the sorption of molecules of organic inhibitors is proposed.The results show the high compatibility of the used inhibitors with the calcium-phosphate PEO-matrix,indicating the possibility of forming a self-healing coating by means of these active substances.展开更多
This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the...This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the surrounding physical environment. Microbial degradation of organic contaminants is important for the detoxification of toxic substances thereby minimizing stagnation in the environment and accumulating in the food chain. Since organic contaminants are not easily dissolved in water, they will penetrate sediment and end up enriching the adjacent soil. The hypothesis that we are testing is microbial activity and carbon isotope fractionation will be greater in preserved soils than urban soils. The reason why this is expected to be the case is the expectation of higher microbial activity in preserved environments due to less exposure to pollutants, better soil structure, higher organic matter content, and more favorable conditions for microbial growth. This is contrasted with urban soils, which are impacted by pollutants and disturbances, potentially inhibiting microbial activity. We wish to collect soil samples adjacent to the Passaic River at a pristine location, Great Swamp Wildlife Refuge, a suburban location, Goffle Brook Park, Hawthorne NJ, and an urban location, Paterson NJ. These soil samples will be weighed for soil organic matter (SOM) and weighed for isotope ratio mass spectrometry (IRMS) to test organic carbon isotopes. High SOM and δ13C depletion activity indicate microbial growth based on the characteristics of the soil horizon rather than the location of the soil sample which results in degradation of organic compounds.展开更多
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
The sulfate radical-based photocatalytic process is supposed to be the most promising way to degrade organic pollutants.However,the development of a suitable and efficient photocatalyst is very challenging.The 40LaFeO...The sulfate radical-based photocatalytic process is supposed to be the most promising way to degrade organic pollutants.However,the development of a suitable and efficient photocatalyst is very challenging.The 40LaFeO_(3)-CuFe_(2)O_(4)(40LFO-CFO)nanocomposite was constructed and its catalytic performance was studied using Rhodamine B(RhB)as the target pollutant.40LFO-CFO exhibited excellent RhB degradation by the persulfate(PS)-assisted photocatalytic process compared to the pristine LFO and CFO.The degradation rate constant for RhB by 40LFO-CFO in the Vis/PS system was 2.22h^(-1)which is 3.04 times and 5.05 times higher than the pristine LFO(0.73 h^(-1))and CFO(0.44h^(-1)),respectively.Furthermore,the trapping experiments and EPR spectra proved that h^(+) plays a leading role in the bleaching of RhB for the 40LFO-CFO/PS/Vis system.The enhanced photocatalytic oxidation activity of 40LFO-CFO could be attributed to the unique charge carriers flow in 40LFO-CFO due to the Z-scheme and the cooperation effect between photocatalysis and PS activation.The recycle tests confessed the stability of 40LFO-CFO.Additionally,the intermediates and products of RhB are detected by liquid chromatographymass spectrometry(LC-MS),and the photocatalytic degradation routes of RhB for the 40LFO-CFO/Vis/PS system were proposed.Moreover,the 40LFO-CFO nanocomposite has a superior catalytic performance for other organics,suggesting that it is a promising heterocatalyst because of its high catalytic activity and stability for the PS-assisted photocatalytic process.展开更多
In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mes...In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.展开更多
文摘More efficient oxidation methods are needed to degrade especially newly emerging recalcitrant organic contaminants at low concentrations in the water environment. Reduced photonic efficiency of immobilized TiO2 is a major challenge in TiO2-assisted advanced oxidation processes (AOP). Mineralization of 2,4-dichllorophenoxyacetic acid (2,4-D) in low aqueous solution by O3/UV/TiO2 using the world’s first high-strength TiO2 fiber was investigated and compared with O3, UV/TiO2, and O3/TiO2 in laboratory batch ex...
文摘Herein,the application of a N-doped graphitic-carbon-coated iron nitride composite dispersed in a N-doped carbon framework(Fe_(3)N@NG/NC)is investigated as a heterogeneous electro-Fenton(HE-EF)catalyst for the efficient removal of organics.The simultaneous carbonization and ammonia etching of iron-based metal organic framework(Fe-MOF)materials yielded well-dispersed N-doped carbon-coated Fe_(3)N nanoparticles with a diameter of~70 nm.The Fe_(3)N and pyridinic N endowed the composite with high HE-EF activity for decomposing the electrogenerated H_(2)O_(2) to•OH.The Fe_(3)N@NG/NC exhibited outstanding HE-EF performance in removing various organic pollutants with low iron leaching.A removal rate of 97-100%could be obtained for rhodamine B(RhB),dimethyl phthalate,methylene blue,and orange Ⅱ in 120 min at a pH of 5.0.When the solution pH was set to 3.0,5.0,7.0,and 9.0,the removal rate of RhB reached 100%,96%,92%,and 81%,respectively,in 60 min at an optimum voltage of 0.0 V(vs.reversible hydrogen electrode(RHE)).Moreover,the concentration of leached iron was expected to be below 0.03 mg/L in a wide pH range of 3.0-9.0.In addition,the RhB removal efficiency remained as high as 90%after six cycles in the reusability experiments.This work highlights the MOF-derived Fe_(3)N composite as an efficient HE-EF catalyst and the corresponding catalytic mechanism,which facilitates its application in wastewater treatment.
基金National Natural Science Foundation of China(Grant No.21902001,22179001)Distinguished Young Research Project of Anhui Higher Education Institution(Grant No.2022AH020007)+1 种基金University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2023-009)Higher Education Natural Science Foundation of Anhui Province(Grant No.2023AH050114).
文摘Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adsorption and photocatalytic degradation process of methylene blue(MB)on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives.A possible adsorption‐photocatalytic degradation mechanism is proposed.The optimized 1M8G composite achieves 95%MB removal(60.8 mg/g)in 210 min and displays well recyclability over ten cycles.The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model.This study shed light on the design of MOFs based composites for water treatment.
基金supported by the Grant of Russian Science Foundation,Russia(project no 20–13–00130,https://rscf.ru/en/project/20-13-00130/)supported by the Grant of Russian Science Foundation,Russia(project no 24–73–10008,https://rscf.ru/en/project/24-73-10008/)XRD data were obtained under the government assignments from the Ministry of Science and Higher Education of the Russian Federation,Russia(project no FWFN-2024-0001).
文摘The efficiency of the green inhibitors(sodium salts of fumarate,glycolate and gluconate)in suppressing corrosion of the structural MA8 magnesium alloy(Mg–Mn–Ce)and the biomedical Mg–0.8Ca alloy was studied using the hydrogen evolution measurements,mass loss test,EIS,PDP,SVET/SIET.The analysis of the morphology,chemical composition,and growth kinetic of corrosion films formed in 0.9 wt%NaCl solution with and without corrosion inhibitors was carried out.The most compact surface film with the smallest thickness was formed in a saline solution with sodium fumarate.The Mg alloy samples exhibited the highest polarization resistance,the lowest localized electrochemical activity,and the lowest corrosion rate in saline with the addition of sodium fumarate and sodium glycolate.The efficiency of the applied inhibitors was up to 81%.The model of the corrosion mechanism based on the sorption of molecules of organic inhibitors is proposed.The results show the high compatibility of the used inhibitors with the calcium-phosphate PEO-matrix,indicating the possibility of forming a self-healing coating by means of these active substances.
文摘This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the surrounding physical environment. Microbial degradation of organic contaminants is important for the detoxification of toxic substances thereby minimizing stagnation in the environment and accumulating in the food chain. Since organic contaminants are not easily dissolved in water, they will penetrate sediment and end up enriching the adjacent soil. The hypothesis that we are testing is microbial activity and carbon isotope fractionation will be greater in preserved soils than urban soils. The reason why this is expected to be the case is the expectation of higher microbial activity in preserved environments due to less exposure to pollutants, better soil structure, higher organic matter content, and more favorable conditions for microbial growth. This is contrasted with urban soils, which are impacted by pollutants and disturbances, potentially inhibiting microbial activity. We wish to collect soil samples adjacent to the Passaic River at a pristine location, Great Swamp Wildlife Refuge, a suburban location, Goffle Brook Park, Hawthorne NJ, and an urban location, Paterson NJ. These soil samples will be weighed for soil organic matter (SOM) and weighed for isotope ratio mass spectrometry (IRMS) to test organic carbon isotopes. High SOM and δ13C depletion activity indicate microbial growth based on the characteristics of the soil horizon rather than the location of the soil sample which results in degradation of organic compounds.
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.
基金funded by the National Natural Science Foundation of China(52062047)the Innovation Capacity Support Plan of Shaanxi Province(2020TD-032)+2 种基金Yulin Science and Technology Plan(2019-81-1,CXY-2021-101-02 and 2023-CXY-154)Joint Fund of Clean Energy Innovation Institute of Chinese Academy of Sciences and Yulin University(YLUDNL202202)Yulin University Science and Technology Plan(2020TZRC01).
文摘The sulfate radical-based photocatalytic process is supposed to be the most promising way to degrade organic pollutants.However,the development of a suitable and efficient photocatalyst is very challenging.The 40LaFeO_(3)-CuFe_(2)O_(4)(40LFO-CFO)nanocomposite was constructed and its catalytic performance was studied using Rhodamine B(RhB)as the target pollutant.40LFO-CFO exhibited excellent RhB degradation by the persulfate(PS)-assisted photocatalytic process compared to the pristine LFO and CFO.The degradation rate constant for RhB by 40LFO-CFO in the Vis/PS system was 2.22h^(-1)which is 3.04 times and 5.05 times higher than the pristine LFO(0.73 h^(-1))and CFO(0.44h^(-1)),respectively.Furthermore,the trapping experiments and EPR spectra proved that h^(+) plays a leading role in the bleaching of RhB for the 40LFO-CFO/PS/Vis system.The enhanced photocatalytic oxidation activity of 40LFO-CFO could be attributed to the unique charge carriers flow in 40LFO-CFO due to the Z-scheme and the cooperation effect between photocatalysis and PS activation.The recycle tests confessed the stability of 40LFO-CFO.Additionally,the intermediates and products of RhB are detected by liquid chromatographymass spectrometry(LC-MS),and the photocatalytic degradation routes of RhB for the 40LFO-CFO/Vis/PS system were proposed.Moreover,the 40LFO-CFO nanocomposite has a superior catalytic performance for other organics,suggesting that it is a promising heterocatalyst because of its high catalytic activity and stability for the PS-assisted photocatalytic process.
基金supported by the National Natural Science Foundation of China(21373056)the Science and Technology Commission of Shanghai Municipality(13DZ2275200)~~
文摘In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.