Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli R...Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli River and the Bielahong River. The results showed that the average contents of DOC for soil layer of 0–100 cm were 730.6 mg/kg, 250.9 mg/kg, 423.0 mg/kg and 333.1 mg/kg respectively from riverbed to river terrace along the transverse directions of the Naoli watershed. The content of the soil DOC was the highest in the riverbed, lower in the high floodplain and much lower in the river terrace, and it was the lowest in the low floodplain. The difference in the content and vertical distribution of DOC between the riverbed and the three riparian wetlands was significant, while it was not significant among the low floodplain, the high floodplain and the river terrace. The variability of soil DOC was related to the hydrological connectivity between different landscape position of the riparian wetlands and the adjacent stream. Extremely significant correlations were observed between DOC and total organic carbon(TOC), total iron(TFe), ferrous iron(Fe(II)) whose correlation coefficients were 0.819, –0.544 and –0.709 in riparian wetlands of the Naoli River. With the increase of wetland destruction, soil p H increased and soil DOC content changed. The correlation coefficients between soil DOC and TOC, TFe, Fe(II) also changed into 0.759, –0.686 and –0.575 respectively in the Bielahong River. Under the impact of drainage ditches, the correlations between soil DOC and TFe, Fe(II) were not obvious, while the soil p H was weakly alkaline and was negatively correlated with soil DOC in the previous high floodplain. It indicates that riparian hydro-geomorphology is the main factor that could well explain this spatial variability of soil DOC, and the agricultural environmental hydraulic works like ditching also must be considered.展开更多
Anthropogenic activities largely influence the soil quality of agricultural fields and the composition of soil. Samples of typical anthropogenic Loutu soil in the Guanzhong area of the Loess Plateau, Shaanxi Province,...Anthropogenic activities largely influence the soil quality of agricultural fields and the composition of soil. Samples of typical anthropogenic Loutu soil in the Guanzhong area of the Loess Plateau, Shaanxi Province, China were collected and measured for soil compaction, bulk density, total organic carbon(TOC), active organic carbon(AOC), and soil enzyme activities to investigate spatial variations in soil quality. The results indicate that soil compaction and bulk density increased with increasing distance from the farm village, whereas soil TOC, AOC, and soil enzyme activities firstly increased and subsequently decreased with increasing distance from the farm village. All of the tested parameters presented clear concentric distribution. Vertically, soil compaction and bulk density in the topsoil were lower than those in the subsoil, but all other tested parameters in the topsoil were significantly higher than those in the subsoil. In addition, there was a significant positive correlation between organic carbon content and enzyme activities, confirming that the spatial distribution of Loutu soil characteristics has been affected by long-term anthropogenic activities to some extent. The results of this study imply that the use of farmyard manure and appropriate deep plowing are important and effective ways to maintain and improve soil quality.展开更多
The identities and concentrations of low-molecular-weight organic acids (LMWOAs) were determined by ion chromatography throughout a 20-m water column in Hongfeng Lake, China. The spatiotemporal variations of LMWOAs ...The identities and concentrations of low-molecular-weight organic acids (LMWOAs) were determined by ion chromatography throughout a 20-m water column in Hongfeng Lake, China. The spatiotemporal variations of LMWOAs and their contributions to dissolved organic matter (DOM) in a research period of 24 hr were also investigated. The results demonstrated that five LMWOAs (lactic, acetic, pyruvic, sorbic, oxalic acid) were detected, and their total concentration and proportion in DOC were 6.55 μmol/L and 7.47%. Their average levels were 2.50, 0.65, 2.35, 0.96 and 0.09 μmol/L, respectively. LMWOAs were higher during daytime (10:00-18:00 on Jun 13, 2008) than nighttime (21:00-6:00 the next morning), in particular 4.99 μmol/L high in the epilimnion ( 1 m water depth), reflecting the fact that direct import from terrigenous sources and photochemical production from humic materials were dominant during LMWOAs' origin and accumulation. The same factors caused LMWOAs to be 0.63 μmol/L in the epilimnion higher than in the hypolimnion. The rapid decrease of total organic acid (TOA) up until 18:00 mainly resulted from bio-uptake and mineralization in the hypolimnion (〉1 m water depth). Pyruvic acid increased with time in the epilimnion and decreased in the hypolimnion, largely related to the two contrary processes of continuous degradation and synthesis of macromolecular organic matter during life materials' cycle mediated by organisms. Simultaneously, plankton behavior and thermal stratification played a pivotal role in LMWOAs' behavior in the water column, causing decreasing and increasing profiles. The distribution of LMWOAs represents an interesting resource for biogeochemical research of DOM in aquatic ecosystems.展开更多
This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangla...This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangladesh. The wetland units (of the hybrid system) included organic, inorganic media, and were planted with nineteen types of macrophytes. The wetland train was operated under hydraulic loading fluctuation and seasonal variation. The performance analyses (across the wetland units) illustrated simultaneous denitrification and organics removal rates in the first stage vertical flow wetland, due to organic carbon leaching from the employed organic media. Higher mean organics removal rates (656.0 g COD](m2.day)) did not completely inhibit nitrification in the first stage vertical flow system; such pattern could be linked to effective utilization of the trapped oxygen, as the flow was directed throughout the media by the baffle walls. Second stage horizontal flow wetland showed enhanced biodegradable organics removal, which depleted organic carbon availability for denitrification. The final stage integrated wetland system allowed further nitrogen removal from wastewater, via nutrient uptake by plant roots (along with nitrification), and generation of organic carbon (by the dead macrophytes) to support denitrification. The system achieved higher E. coli mortality through protozoa predation, E. coli oxidation, and destruction by UV radiation. In general, enhanced pollutant removal efflciencies as demonstrated by the structurally modified hybrid wetland system signify the necessity of such modification, when operated under adverse conditions such as: substantial input organics loading, hydraulic loading fluctuation, and seasonal variation.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41101080,41171047)Natural Science Foundation of Shandong Province(No.ZR2014DQ028)
文摘Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli River and the Bielahong River. The results showed that the average contents of DOC for soil layer of 0–100 cm were 730.6 mg/kg, 250.9 mg/kg, 423.0 mg/kg and 333.1 mg/kg respectively from riverbed to river terrace along the transverse directions of the Naoli watershed. The content of the soil DOC was the highest in the riverbed, lower in the high floodplain and much lower in the river terrace, and it was the lowest in the low floodplain. The difference in the content and vertical distribution of DOC between the riverbed and the three riparian wetlands was significant, while it was not significant among the low floodplain, the high floodplain and the river terrace. The variability of soil DOC was related to the hydrological connectivity between different landscape position of the riparian wetlands and the adjacent stream. Extremely significant correlations were observed between DOC and total organic carbon(TOC), total iron(TFe), ferrous iron(Fe(II)) whose correlation coefficients were 0.819, –0.544 and –0.709 in riparian wetlands of the Naoli River. With the increase of wetland destruction, soil p H increased and soil DOC content changed. The correlation coefficients between soil DOC and TOC, TFe, Fe(II) also changed into 0.759, –0.686 and –0.575 respectively in the Bielahong River. Under the impact of drainage ditches, the correlations between soil DOC and TFe, Fe(II) were not obvious, while the soil p H was weakly alkaline and was negatively correlated with soil DOC in the previous high floodplain. It indicates that riparian hydro-geomorphology is the main factor that could well explain this spatial variability of soil DOC, and the agricultural environmental hydraulic works like ditching also must be considered.
基金supported by the National Natural Science Foundation of China (41471420)the Natural Science Foundation of Shaanxi Province (2016JQ4016)+1 种基金the Fundamental Research Funds for the Central University (GK201603076, GK201601009, GK201701010)the Youth Innovation Team Project in the Tourism and Environment College of Shaanxi Normal University
文摘Anthropogenic activities largely influence the soil quality of agricultural fields and the composition of soil. Samples of typical anthropogenic Loutu soil in the Guanzhong area of the Loess Plateau, Shaanxi Province, China were collected and measured for soil compaction, bulk density, total organic carbon(TOC), active organic carbon(AOC), and soil enzyme activities to investigate spatial variations in soil quality. The results indicate that soil compaction and bulk density increased with increasing distance from the farm village, whereas soil TOC, AOC, and soil enzyme activities firstly increased and subsequently decreased with increasing distance from the farm village. All of the tested parameters presented clear concentric distribution. Vertically, soil compaction and bulk density in the topsoil were lower than those in the subsoil, but all other tested parameters in the topsoil were significantly higher than those in the subsoil. In addition, there was a significant positive correlation between organic carbon content and enzyme activities, confirming that the spatial distribution of Loutu soil characteristics has been affected by long-term anthropogenic activities to some extent. The results of this study imply that the use of farmyard manure and appropriate deep plowing are important and effective ways to maintain and improve soil quality.
基金supported by the National Basic Research Program (973) of China (No.2008CB418200,2008CB418000)the National Natural Science Foundation of China (No.41003055, U0833603, 40632011,40873080)the Chinese Research Academy of Environmental Sciences (No.2007KYYW01)
文摘The identities and concentrations of low-molecular-weight organic acids (LMWOAs) were determined by ion chromatography throughout a 20-m water column in Hongfeng Lake, China. The spatiotemporal variations of LMWOAs and their contributions to dissolved organic matter (DOM) in a research period of 24 hr were also investigated. The results demonstrated that five LMWOAs (lactic, acetic, pyruvic, sorbic, oxalic acid) were detected, and their total concentration and proportion in DOC were 6.55 μmol/L and 7.47%. Their average levels were 2.50, 0.65, 2.35, 0.96 and 0.09 μmol/L, respectively. LMWOAs were higher during daytime (10:00-18:00 on Jun 13, 2008) than nighttime (21:00-6:00 the next morning), in particular 4.99 μmol/L high in the epilimnion ( 1 m water depth), reflecting the fact that direct import from terrigenous sources and photochemical production from humic materials were dominant during LMWOAs' origin and accumulation. The same factors caused LMWOAs to be 0.63 μmol/L in the epilimnion higher than in the hypolimnion. The rapid decrease of total organic acid (TOA) up until 18:00 mainly resulted from bio-uptake and mineralization in the hypolimnion (〉1 m water depth). Pyruvic acid increased with time in the epilimnion and decreased in the hypolimnion, largely related to the two contrary processes of continuous degradation and synthesis of macromolecular organic matter during life materials' cycle mediated by organisms. Simultaneously, plankton behavior and thermal stratification played a pivotal role in LMWOAs' behavior in the water column, causing decreasing and increasing profiles. The distribution of LMWOAs represents an interesting resource for biogeochemical research of DOM in aquatic ecosystems.
文摘This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangladesh. The wetland units (of the hybrid system) included organic, inorganic media, and were planted with nineteen types of macrophytes. The wetland train was operated under hydraulic loading fluctuation and seasonal variation. The performance analyses (across the wetland units) illustrated simultaneous denitrification and organics removal rates in the first stage vertical flow wetland, due to organic carbon leaching from the employed organic media. Higher mean organics removal rates (656.0 g COD](m2.day)) did not completely inhibit nitrification in the first stage vertical flow system; such pattern could be linked to effective utilization of the trapped oxygen, as the flow was directed throughout the media by the baffle walls. Second stage horizontal flow wetland showed enhanced biodegradable organics removal, which depleted organic carbon availability for denitrification. The final stage integrated wetland system allowed further nitrogen removal from wastewater, via nutrient uptake by plant roots (along with nitrification), and generation of organic carbon (by the dead macrophytes) to support denitrification. The system achieved higher E. coli mortality through protozoa predation, E. coli oxidation, and destruction by UV radiation. In general, enhanced pollutant removal efflciencies as demonstrated by the structurally modified hybrid wetland system signify the necessity of such modification, when operated under adverse conditions such as: substantial input organics loading, hydraulic loading fluctuation, and seasonal variation.