The increasingly complex battlefield environment requests much closer connection in a team having both manned and unmanned aerial vehicles(MAVs and UAVs). This special heterogeneous team structure causes demands for e...The increasingly complex battlefield environment requests much closer connection in a team having both manned and unmanned aerial vehicles(MAVs and UAVs). This special heterogeneous team structure causes demands for effective organizational structure design solutions. Implementing adjustable autonomy in the organizational structure, the expected evaluation function is established based on the physical resource, intelligent resource, network efficiency, network vulnerability and task execution reliability. According to the above constraints, together with interaction latency, decision-making information processing capacity, and decision-making latency, we aim to find a preferential organizational structure. The proposed organizational structure includes cooperative relationships, supervisory control relationships, and decision-making authorization relationships. In addition,by considering the influence on the intelligent support capabilities and the task execution reliability created by adjustable autonomy, it helps to build the proposed organizational structure designed with certain degree of flexibility to deal with the potential changes in the unpredictable battlefield environment. Simulation is conducted to confirm our design to be valid. And the method is still valid under different battlefield environments and interventions.展开更多
Three-dimensional(3D)ordered porous carbon is generally believed to be a promising electromagnetic wave(EMW)absorbing material.However,most research works targeted performance improvement of 3D ordered porous carbon,a...Three-dimensional(3D)ordered porous carbon is generally believed to be a promising electromagnetic wave(EMW)absorbing material.However,most research works targeted performance improvement of 3D ordered porous carbon,and the specific attenuation mechanism is still ambiguous.Therefore,in this work,a novel ultra-light egg-derived porous carbon foam(EDCF)structure has been successfully constructed by a simple carbonization combined with the silica microsphere template-etching process.Based on an equivalent substitute strategy,the influence of pore volume and specific surface area on the electromagnetic parameters and EMW absorption properties of the EDCF products was confirmed respectively by adjusting the addition content and diameter of silica microspheres.As a primary attenuation mode,the dielectric loss originates from the comprehensive effect of conduction loss and polarization loss in S-band and C band,and the value is dominated by polarization loss in X band and Ku band,which is obviously greater than that of conduction loss.Furthermore,in all samples,the largest effective absorption bandwidth of EDCF-3 is 7.12 GHz under the thickness of 2.13 mm with the filling content of approximately 5 wt%,covering the whole Ku band.Meanwhile,the EDCF-7 sample with optimized pore volume and specific surface area achieves minimum reflection loss(RL_(min))of−58.08 dB at 16.86 GHz while the thickness is 1.27 mm.The outstanding research results not only provide a novel insight into enhancement of EMW absorption properties but also clarify the dominant dissipation mechanism for the porous carbon-based absorber from the perspective of objective experiments.展开更多
基金supported by the National Natural Science Foundation of China(61305133)the Aeronautical Science Foundation of China(2016ZC53020)the Fundamental Research Funds for the Central Universities(3102017jg02015)
文摘The increasingly complex battlefield environment requests much closer connection in a team having both manned and unmanned aerial vehicles(MAVs and UAVs). This special heterogeneous team structure causes demands for effective organizational structure design solutions. Implementing adjustable autonomy in the organizational structure, the expected evaluation function is established based on the physical resource, intelligent resource, network efficiency, network vulnerability and task execution reliability. According to the above constraints, together with interaction latency, decision-making information processing capacity, and decision-making latency, we aim to find a preferential organizational structure. The proposed organizational structure includes cooperative relationships, supervisory control relationships, and decision-making authorization relationships. In addition,by considering the influence on the intelligent support capabilities and the task execution reliability created by adjustable autonomy, it helps to build the proposed organizational structure designed with certain degree of flexibility to deal with the potential changes in the unpredictable battlefield environment. Simulation is conducted to confirm our design to be valid. And the method is still valid under different battlefield environments and interventions.
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002199,52002200,52102106Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020ZD09+2 种基金the Natural Science Foundation of Shandong Province under Grant No.ZR2019BEM042,ZR2020QE063the Innovation and Technology Program of Shandong Province under Grant No.2020KJA004the Taishan Scholars Program of Shandong Province under No.ts201511034
文摘Three-dimensional(3D)ordered porous carbon is generally believed to be a promising electromagnetic wave(EMW)absorbing material.However,most research works targeted performance improvement of 3D ordered porous carbon,and the specific attenuation mechanism is still ambiguous.Therefore,in this work,a novel ultra-light egg-derived porous carbon foam(EDCF)structure has been successfully constructed by a simple carbonization combined with the silica microsphere template-etching process.Based on an equivalent substitute strategy,the influence of pore volume and specific surface area on the electromagnetic parameters and EMW absorption properties of the EDCF products was confirmed respectively by adjusting the addition content and diameter of silica microspheres.As a primary attenuation mode,the dielectric loss originates from the comprehensive effect of conduction loss and polarization loss in S-band and C band,and the value is dominated by polarization loss in X band and Ku band,which is obviously greater than that of conduction loss.Furthermore,in all samples,the largest effective absorption bandwidth of EDCF-3 is 7.12 GHz under the thickness of 2.13 mm with the filling content of approximately 5 wt%,covering the whole Ku band.Meanwhile,the EDCF-7 sample with optimized pore volume and specific surface area achieves minimum reflection loss(RL_(min))of−58.08 dB at 16.86 GHz while the thickness is 1.27 mm.The outstanding research results not only provide a novel insight into enhancement of EMW absorption properties but also clarify the dominant dissipation mechanism for the porous carbon-based absorber from the perspective of objective experiments.