Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junctio...Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junction device had surpassed 19%.The cathode interface layer(CIL),by optimizing the connection between the active layer and the cathode electrode,has become a momentous part to strengthen the performances of the OSCs.Simultaneously,CIL is also indispensable to illustrating the working mechanism of OSCs and enhancing the stability of the OSCs.In this essay,hybrid CILs in OSCs have been summarized.Firstly,the advancement and operating mechanism of OSCs,and the effects and relevant design rules of CIL are briefly concluded;secondly,the significant influence of CIL on enhancing the stability and PCE of OSCs is presented;thirdly,the characteristics of organic hybrid CIL and organic-inorganic hybrid CIL are introduced.Finally,the conclusion and outlook of CIL are summarized.展开更多
By using p-bis(p - N, N-diphenyl-aminostyryl)benzene doped 2-tert-butyl-9, 10-bis-β-naphthyl)-anthracene as an emitting layer, we fabricate a high-efficiency and long-lifetime blue organic light emitting diode wit...By using p-bis(p - N, N-diphenyl-aminostyryl)benzene doped 2-tert-butyl-9, 10-bis-β-naphthyl)-anthracene as an emitting layer, we fabricate a high-efficiency and long-lifetime blue organic light emitting diode with a maximum external quantum efficiency of 6.19% and a stable lifetime at a high initial current density of 0.0375 A/cm2. We demonstrate that the change in the thicknesses of organic layers affects the operating voltage and luminous efficiency greater than the lifetime. The lifetime being independent of thickness is beneficial in achieving high-quality full-colour display devices and white lighting sources with multi-emitters.展开更多
Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the dop...Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the doping density of the PSCs. It is shown that the processing of DIO does not change the doping density of the P3HT phase, while it causes a dramatic reduction of the doping density of the PCBM phase, which decreases the doping density of the whole blend layer from 3.7 × 10^16 cm-3 to 1.2 ×10^16 cm-3. The reduction of the doping density in the PCBM phase originates from the increasing crystallinity of PCBM with DIO addition, and it leads to a decreasing doping density in the blend film and improves the short circuit current of the PSCs.展开更多
We report a simple hole-blocking material (biphenyl-3,3'-diyl)bis(diphenylphosphine oxide) (BiPh-m-BiDPO) based on our recent advance. The bis(phosphine oxide) compound shows HOMO/LUMO levels of ∽-6.71/- 2.5...We report a simple hole-blocking material (biphenyl-3,3'-diyl)bis(diphenylphosphine oxide) (BiPh-m-BiDPO) based on our recent advance. The bis(phosphine oxide) compound shows HOMO/LUMO levels of ∽-6.71/- 2.51 eV. Its phosphorescent spectrum in a solid film features two major emission bands peaking at 2.69 and 2.4eV, corresponding to 0-0 and 01 vibronic transitions, respectively. The measurement of the electron-only devices reveals that BiPh-m-BiDPO possesses electron mobility of 2.28 × 10^-9-3.22× 10^-8cm2 V-1s-1 at E = 2- 5 × 10^5 V/cm. The characterization of the sky blue fluorescent and red phosphorescent pin organic light-emitting diodes (OLEDs) utilizing BiPh-m-BiDPO as the hole blocker shows that its shallow LUMO level as well as the low electron mobility affects significantly the power efficiency and hence operational stability, relative to the luminous efficiency, especially at high luminance. In combination with our recent results, the present study provides an indepth insight on the molecular structure-property correlation in the organic phosphinyl-containing hole-blocking materials.展开更多
We report that a novel exciton feedback effect is observed by introducing the bis(2-methyl-8-quinolinolato)(4- phenylphenolato)Muminum (BAlq) inserted between the emitting layer (EML) and the electron transpor...We report that a novel exciton feedback effect is observed by introducing the bis(2-methyl-8-quinolinolato)(4- phenylphenolato)Muminum (BAlq) inserted between the emitting layer (EML) and the electron transporting layer in blue organic light emitting diodes. As an exciton feedback layer (EFL), the BAlq does not act as a traditional hole blocking effect. The design of this kind of device structure can greatly reduce excitons' quenching due to accumulated space charge at the exciton formation interface. Meanwhile, the non-radiative energy transfer from EFL to the EML can also be utilized to enhance the excitons' formation, which is confirmed by the test of photolumimescent transient lifetime decay and electroluminescence enhancement of these devices. Accordingly, the optimal device presents the improved performances with the maximum current efficiency of 4.2 cd/A and the luminance of 24600cd/m2, which are about 1.45 times and 1.75 times higher than those of device A (control device) without the EFL, respectively. Simultaneously, the device shows an excellent color stability with a tiny offset of the CIE coordinates (△x = ±0.003, △y = ±0.004) and a relatively lower efficiency roll-off of 26.2% under the driving voltage varying from 3 V to 10 V.展开更多
We demonstrate that the electroluminescent performances of organic light-emitting diodes are significantly improved by employing a zinc phthalocyanine (ZnPc)-based composite hole transport layer (c-HTL). The optim...We demonstrate that the electroluminescent performances of organic light-emitting diodes are significantly improved by employing a zinc phthalocyanine (ZnPc)-based composite hole transport layer (c-HTL). The optimum ris-(8-hydroxyquinoline)aluminum (Alq3)-based organic light-emitting diode with a c-HTL exhibits a lower turn-on voltage of 2.8 V, a higher maximum current efficiency of 3.40 cd/A and a higher maximum power efficiency of 1.91 lm/W, which are superior to those of the conventional device (turn-on voltage of 3.8 V, maximum current efficiency of 2.60 cd/A, and maximum power efficiency of 1.21 lm/W). We systematically studied the effects of different kinds of N’-diphenyl-N,N’-bis(1-naphthyl)(1,1’-biphenyl)-4,4’diamine (NPB):ZnPc c-HTL. Meanwhile, we also investigate their mechanisms different from that in the case of using ZnPc as buffer layer. The specific analysis is based on the absorption spectra of the hole transporting material and current density–voltage characteristics of the corresponding hole-only devices.展开更多
We improve the performance of organic light-emitting diodes (OLEDs) with both a MoO3 hole injection layer (HIL) and a MoO3 doped hole transport layer (HTL), and present a systematical and comparative investigati...We improve the performance of organic light-emitting diodes (OLEDs) with both a MoO3 hole injection layer (HIL) and a MoO3 doped hole transport layer (HTL), and present a systematical and comparative investigation on these devices. Compared with OLEDs with only MoO3 HIL or MoO3 doped HTL, OLEDs with both MoO3 HIL and MoO3 doped HTL show superior performance in driving voltage, power efficiency, and stability. Based on the typical NPB/Alq3 heterojunction structure, OLEDs with both MoO3 HIL and MoO3 doped HTL show a driving voltage of 5.4 V and a power efficiency of 1.41 lm/W for 1000 cd/m2, and a lifetime of around 0. 88 h with an initial luminance of 5268 cd/m2 under a constant current of 190 mA/cm2 operation in air without encapsulation. While OLEDs with only MoO3 HIL or MoO3 doped HTL show higher driving voltages of 6.4 V or 5.8 V and lower power efficiencies of 1.201m/W or 1.341m/W for 1000cd/m2, and a shorter lifetime of 0.33 or 0.60h with an initial luminance of around 5122 or 5300cd/m2 under a constant current of 200 or 216mA/cm2 operation. Our results demonstrate clearly that using both MoO3 HIL and MoO3 doped HTL is a simple and effective approach to simultaneoasly improve both the hole injection and transport efficiency, resulting from the lowered energy barrier at the anode interface and the increased hole carrier density in MoO3 doped HTL.展开更多
Assembly of two-dimensional(2D)metal–organic layers(MOLs)based on the hard and soft acid–base theorem represents an exquisite strategy for the construction of photocatalytic platforms in virtue of the highly exposed...Assembly of two-dimensional(2D)metal–organic layers(MOLs)based on the hard and soft acid–base theorem represents an exquisite strategy for the construction of photocatalytic platforms in virtue of the highly exposed active sites,much improved mass transport,and greatly elevated stability.Herein,nanocages composed of MOLs are produced for the first time through a cosolvent approach utilizing zirconium-based UiO-66-(OH)2 as the structural precursor.To endow the catalytic activity for CO_(2) conversion,single atomic Co^(2+)sites are appended to the Zr-oxo nodes of the MOL cages,demonstrating a remarkable CO yield of 7.74 mmol·g^(-1)·h^(-1) and operational stability of 97.1%product retention after five repeated cycles.Such an outstanding photocatalytic performance is mainly attributed to the unique nanocage morphology comprising enormous 2D nanosheets for augmented Co^(2+)exposure and the abundant surface hydroxyl groups for local CO_(2) enrichment.This work underlines the tailoring of both metal–organic framework(MOF)morphology and functionality to boost the turnover rate of photocatalytic CO_(2) reduction reaction(CO_(2)RR).展开更多
Heterocyclic compounds are the promising biological compounds as nature-friendly for the corrosion protection of metallic surface.In this work,three heterocyclic compounds such as 1-azanaphthalene-8-ol(8-AN),2-methylq...Heterocyclic compounds are the promising biological compounds as nature-friendly for the corrosion protection of metallic surface.In this work,three heterocyclic compounds such as 1-azanaphthalene-8-ol(8-AN),2-methylquinoline-8-ol(8-MQ),and 8-quinolinol-5-sulfonic acid(8-QSA)were used as green compounds,and their anti-corrosion performance for AZ31 Mg in saline water was discussed on the basis of impedance interpretation and surface analysis.Findings found that the electrochemical performance was improved in the order of 8-AN>8-MQ>8-QSA,demonstrating the electron donor effect of N-heterocycles to form coordination complexes on the magnesium surface.From the electrochemical performance,the protective layer constructed at the optimal concentration reinforces the barrier against aggressive environments,with potential inhibition efficiency of 87.4%,99.0%,and 99.9%for 8-QSA,8-MQ,and 8-AN,respectively.Quantum chemical parameters and electron density distribution for free organic species in the absence and presence of Mg^(2+)cation were evaluated using density functional theory(DFT).Upon the formation of coordination complexes between organic compound and Mg^(2+),energy gap underwent change about ΔE=5.7 eV in the 8-AN/Mg^(2+)system.Furthermore,the adsorption of heterocyclic compounds on Mg surface reveals the formation of strong covalent bonds with Mg atoms,which further confirmed by the electron density difference and projected density of states analyses.Based on theoretical calculations,three inhibitors can adsorb on the metal surface in both parallel and perpendicular orientations via C,O and N atoms.In the parallel configuration,the C-Mg,N-Mg and O-Mg bond distances are between 2.11 and 2.25˚A,whereas the distances in the case of perpendicular adsorption are between 2.20 and 2.40˚A(covalent bonds via O and N atoms).The results indicated that parallel configurations are energetically more stable,in which the adsorption energies are-4.48 eV(8-AN),-4.28 eV(8-MQ)and-3.82 eV(8-QSA)compared to that of perpendicular adsorption(-3.65,-3.40,and-2.63 eV).As a result,experimental and theoretical studies were in well agreement and confirm that the nitrogen and oxygen atoms will be the main adsorption sites.展开更多
In this study, we investigate some main electrical parameters of the gold/poly(3-hexylthiophene):[6,6]-phenyl C61 bu- tyric acid methyl ester:2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane/n-type silicon (A...In this study, we investigate some main electrical parameters of the gold/poly(3-hexylthiophene):[6,6]-phenyl C61 bu- tyric acid methyl ester:2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane/n-type silicon (Au/P3HT:PCBM:F4-TCNQ/n- Si) metal-polymer-semiconductor (MPS) Schottky barrier diode (SBD) in terms of the effects of F4-TCNQ concentration (0%, 1%, and 2%). F4-TCNQ-doped P3HT:PCBM is fabricated to figure out the p-type doping effect on the device per- formance. The main electrical parameters, such as ideality factor (n), barrier height (ФB0), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss) are determined from the forward and reverse bias current-voltage (l-V) characteristics in the dark and at room temperature. The values of n, Rs, ФB0, and Nss are significantly reduced by using the 1% F4-TCNQ doping in P3HT:PCBM:F4-TCNQ organic blend layer, additionally, the carrier mobility and current are increased by the soft (1%) doping. The most ideal values of electrical parameters are obtained for 1% F4-TCNQ used diode. On the other hand, the carrier mobility and current for the hard doping (2%) become far away from the ideal diode values due to the unbalanced generation of holes/electrons and doping-induced disproportion when compared with 1% F4-TCNQ doping. These results show that the electrical properties of MPS SBDs strongly depend on the F4-TCNQ doping and doping concentration of interfacial P3HT:PCBM:F4-TCNQ organic layer. Moreover, the soft F4-TCNQ dop- ing concentration (1%) in P3HT:PCBM:F4-TCNQ organic layer significantly improves the electrical characteristics of the Au/P3HT:PCBM:F4-TCNQ/n-Si (MPS) SBDs which enables the fabricating of high-quality electronic and optoelectronic devices.展开更多
During the last decade,perovskite solar technologies underwent an impressive development,with power conversion efficiencies reaching 25.5%for single-junction devices and 29.8%for Silicon-Perovskite tandem configuratio...During the last decade,perovskite solar technologies underwent an impressive development,with power conversion efficiencies reaching 25.5%for single-junction devices and 29.8%for Silicon-Perovskite tandem configurations.Even though research mainly focused on improving the efficiency of perovskite photovoltaics(PV),stability and scalability remain fundamental aspects of a mature photovoltaics technology.For n-i-p structure perovskite solar cells,using poly-triaryl(amine)(PTAA)as hole transport layer(HTL)allowed to achieve marked improvements in device stability compared with other common hole conductors.For p-i-n structure,poly-triaryl(amine)is also routinely used as dopant-free hole transport layer,but problems in perovskite film growth,and its limited resistance to stress and imperfect batch-to-batch reproducibility,hamper its use for device upscaling.Following previous computational investigations,in this work,we report the synthesis of two small-molecule organic hole transport layers(BPT-1,2),aiming to solve the above-mentioned issues and allow upscale to the module level.By using BPT-1 and methylammonium-free perovskite,max.Power conversion efficiencies of 17.26%and 15.42%on a small area(0.09 cm^(2))and mini-module size(2.25 cm^(2)),respectively,were obtained,with a better reproducibility than with poly-triaryl(amine).Moreover,BPT-1 was demonstrated to yield more stable devices compared with poly-triaryl(amine)under ISOS-D1,T1,and L1 accelerated life-test protocols,reaching maximum T_(90)values>1000 h on all tests.展开更多
As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency(PCE) and the stability of perovskite solar cells(PSCs). Sui...As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency(PCE) and the stability of perovskite solar cells(PSCs). Suitable interface design can dramatically passivate interface defects and optimize energy level alignment for suppressing the nonradiative recombination and effectively extracting the photogenerated carriers towards higher PCE. Meanwhile, a proper interface design can also block the interface diffusion of ions for high operational stability. Therefore, interface modification is of great significance to make the PSCs more efficient and stable. Upon optimized material choices, the three-dimensional halide perovskite graded junction layer, low-dimensional halide perovskite interface layer and organic salt passivation layer have been constructed on perovskite films for superior PSCs, yet a systematic review of them is missing. Thus, a guide and summary of recent advances in modulating the perovskite films interface is necessary for the further development of more efficient interface modification.展开更多
The development of robust photocatalytic systems is key to harvest the solar power for hydrogen production. In the current study, a series of aluminum-based porphyrinic metal organic frameworks (AlTCPP) with various m...The development of robust photocatalytic systems is key to harvest the solar power for hydrogen production. In the current study, a series of aluminum-based porphyrinic metal organic frameworks (AlTCPP) with various morphologies of bulk, carambola-like and nanosheets are synthesized with modulated layer thickness. Morphology-dependent photocatalytic activities in hydrogen production are witnessed and inversely correlate to the thickness of the Al-TCPP micro-platelets or nanosheets. Particularly, the exfoliated metal organic layers (MOLs) of Al-TCPP demonstrated a high hydrogen yield rate of 1.32×10^(4)μmol h^(-1)g^(-1)that is 21-fold of that from the bulk catalyst, as well as an exceptional TON of6704 that seldom seen in literature. Through comprehensive photochemical characterizations, the remarkable photocatalytic performance of Al-TCPP-MOL is attributed to the great charge separation efficiency and transfer kinetics endowed by the ultrathin 2D morphology with extended active surface area.展开更多
High-performance blue organic light-emitting diodes (OLEDs) are developed. A concept of using multiple-emissive layer (EML) configuration is adopted. In this letter, bis(2-methyl-8-quinolinolate)-4- (phenylphen...High-performance blue organic light-emitting diodes (OLEDs) are developed. A concept of using multiple-emissive layer (EML) configuration is adopted. In this letter, bis(2-methyl-8-quinolinolate)-4- (phenylphenolato)A1 (BAlq) and 9,10-di(naphtha-2-yl)anthracene (ADN), which serve n- and p-type EMLs, respectively, are used to evaluate and demonstrate the multi-EML concept for blue OLEDs. The thickness effect of individual EMLs and the number of EMLs, e.g., triple and quadruple EML components, on the power efficiency of blue OLEDs are systematically investigated. To illustrate the point, the total thickness of the emissive region in different blue OLEDs are kept contact at 30 nm for comparison. The power efficiency of blue OLEDs with a quadruple EML structure of BAlq/ADN/BAlq/ADN is about 40% higher than that of blue OLEDs having a single EML unit. The Commission Internationale deL'eclairage color coordinates of multi-EML OLEDs have values that represent the average of blue emissions from individual EMLs of BAlq and ADN.展开更多
We investigated the properties of C_(60)-based organic field-enect transistors(OFETs)(?) a pentacene passivation layer inserted between the C_(60) active layer and the gate dielectric.After modification of th...We investigated the properties of C_(60)-based organic field-enect transistors(OFETs)(?) a pentacene passivation layer inserted between the C_(60) active layer and the gate dielectric.After modification of the pentacene passivation layer,the performance of the devices was considerably improved compared to C_(60)-based OFETs with only a PMMA dielectric.The peak field-effect mobility was up to 1.01 cm^2/(V·s) and the on/off ratio shifted to 10~4.This result indicates that using a pentacene passivation layer is an effective way to improve the performance of N-type OFETs.展开更多
The relative balance of electron and hole injection is crucial for the achievement of highly efficient quantum dot(QD)lightemitting diodes(QLEDs).Here,an inverted red QLED with the utilization of an organic emitting l...The relative balance of electron and hole injection is crucial for the achievement of highly efficient quantum dot(QD)lightemitting diodes(QLEDs).Here,an inverted red QLED with the utilization of an organic emitting layer(EML)was obtained,exhibiting peak current efficiency(CE)and external quantum efficiency(EQE)of 25.63 cd/A and 23.20%,respectively.In the proposed device,the organic EML,which is a blend of fac-tris(2-phenylpyridine)iridium(Ir(ppy)_(3))and 4,4’-bis(N-carbazolyl)-1,1’-biphenyl(CBP),works as an exciton harvester to capture the leaked electrons from QD layer and the injected holes from hole transporting layer(HTL),then affording energy transfer from organic EML to the adjacent QD layer so that the emission of QD is enhanced significantly.At the same time,according to the results of hole-only and electron-only devices,the insertion of organic EML promotes the hole injection,and eliminates excess electrons from QD to HTL,thus leading to a better match of hole and electron injection in the device.On the basis of the above benefits,the optimal QLED with a 10 nm organic EML offered~2-fold improvements of CE and EQE,respectively,relative to the control device.Furthermore,a better operational lifetime of QLEDs based on the organic EML was achieved.展开更多
We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B- EML),...We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B- EML), and Ir(ppy)3:Ir(piq)3 dopants for green:red EML (GR-EML) with N,N'-dicarbazolyl-3, 5-benzene (mCP) as host material. Thicknesses of B-EML and GR-EML are adjusted to form a narrow recombination zone at two EML's interface and charge trapping happens in EML according to wide highest occupied molecular orbital and/or lowest unoccupied molecular orbital energy band gap of mCP and smaller energy band gap of dopants. The total thickness of both EMLs is fixed at 30 nm in the device structure of ITO (150 nm)/MoO3 (2 nm)/N,N'-diphenyl-N,N'-bis(1-naphthyl-phenyl)-(1,1″-biphenyl)-4, 4'-diamine (70 nm)/ meP:Firpic-8.0% (12 nm)/mCP:Ir(ppy)3-3.0%:Ir(piq)3-1.5% (18 nm)/2″,2',2"'-(1,3,5-benzinetriyl)-tris(1- phenyl-l-H-benzimidazole) (30 nm)/8-hydroxyquinolinolato-lithium (2 nm)/A1 (120 nm). White PHOLED shows 18.25 cd/A of luminous efficiency and white color coordinates of (0.358 and 0.378) at 5000 cd/m2 and color stability with slight CIExy change of (0.028 and 0.002) as increasing luminance from 1000 to 5000 cd/m^2.展开更多
In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC developm...In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC development, device architecture and material design features, we exemplified the exciting progresses made in field by exploiting organic π-functional materials based hole and electron transport layers(HTLs and ETLs) to enable high-performance PVSCs.展开更多
In this Letter, blue phosphorescence organic light-emitting diodes (PHOLEDs) employ structures for electron and/or hole confinement; 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene is used as a hole confinement layer...In this Letter, blue phosphorescence organic light-emitting diodes (PHOLEDs) employ structures for electron and/or hole confinement; 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene is used as a hole confinement layer and tris-(phenylpyrazole)iridium [Ir(ppz)3] is utilized for an electron confinement layer (ECL). The electrical and optical properties of the fabricated blue PHOLEDs with various carrier-confinement structures are analyzed. Structures with a large ehergy offset between the carrier confinement and emitting layers enhance the charge-carrier balance in the emitting region, resulting from the effective carrier confinement. The maximum external quantum efficiency of the blue PHOLEDs with the double-ECLs is 24.02% at 1500 cd/m^2 and its luminous efficiency is 43.76 cd/A, which is 70.47% improved compared to the device without a carrier-confinement layer.展开更多
In boreal and arctic regions,forest fires exert great influences on biogeochemical processes,hydrothermal dynamics of the active layer and near-surface permafrost,and subsequent nutrient cycles.In this article,the stu...In boreal and arctic regions,forest fires exert great influences on biogeochemical processes,hydrothermal dynamics of the active layer and near-surface permafrost,and subsequent nutrient cycles.In this article,the studies on impacts of forest fires on the permafrost environment are reviewed.These studies indicate that forest fires could result in an irreversible degradation of permafrost,successions of boreal forests,rapid losses of soil carbon stock,and increased hazardous periglacial landforms.After forest fires,soil temperatures rise;active layer thickens;the release of soil carbon and nitrogen enhances,and;vegetation changes from coniferous forests to broad-leaved forests,shrublands or grasslands.It may take decades or even centuries for the fire-disturbed ecosystems and permafrost environment to return to pre-fire conditions,if ever possible.In boreal forest,the thickness of organic layer has a key influence on changes in permafrost and vegetation.In addition,climate warming,change of vegetation,shortening of fire return intervals,and extent of fire range and increasing of fire severity may all modify the change trajectory of the fire-impacted permafrost environment.However,the observations and research on the relationships and interactive mechanisms among the forest fires,vegetation,carbon cycle and permafrost under a changing climate are still inadequate for a systematic impact evaluation.Using the chronosequence approach of evaluating the temporal changes by measuring changes in the permafrost environment at different stages at various sites(possibly representing varied stages of permafrost degradation and modes),multi-source data assimilation and model predictions and simulations should be integrated with the results from long-and short-term field investigations,geophysical investigations and airborne surveys,laboratory testing and remote sensing.Future studies may enable quantitatively assess and predict the feed-back relationship and influence mechanism among organic layer,permafrost and active layer processes,vegetation and soil carbon under a warming climate at desired spatial and temporal scales.The irreversible changes in the boreal and artic forest ecosystem and their ecological and hydrothermal thresholds,such as those induced by forest fires,should be better and systematically studied.展开更多
基金supported by the National Natural Science Foundation of China(52263017,21965023,52173170,51973087,and22065025)the Science Fund for Distinguished Young Scholars of Jiangxi Province(20212ACB214009)+2 种基金the Natural Science Foundation of Jiangxi Province(20212ACB203010,20224BAB214007 and20212BAB204052)the Training Project of High-level and Highskilled Leading Talents of Jiangxi Province(2023)the Thousand Talents Plan of Jiangxi Province(jxsq2019201004 and jxsq2020101068)。
文摘Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junction device had surpassed 19%.The cathode interface layer(CIL),by optimizing the connection between the active layer and the cathode electrode,has become a momentous part to strengthen the performances of the OSCs.Simultaneously,CIL is also indispensable to illustrating the working mechanism of OSCs and enhancing the stability of the OSCs.In this essay,hybrid CILs in OSCs have been summarized.Firstly,the advancement and operating mechanism of OSCs,and the effects and relevant design rules of CIL are briefly concluded;secondly,the significant influence of CIL on enhancing the stability and PCE of OSCs is presented;thirdly,the characteristics of organic hybrid CIL and organic-inorganic hybrid CIL are introduced.Finally,the conclusion and outlook of CIL are summarized.
基金Project supported by the Science Fund of Science and Technology Commission of Shanghai Municipality,China (GrantNo. 10dz1140502)the Innovation Key Project of Education Commission of Shanghai Municipality,China (Grant No. 12ZZ091)the National Natural Science Foundation of China (Grant Nos. 61006005 and 61136003)
文摘By using p-bis(p - N, N-diphenyl-aminostyryl)benzene doped 2-tert-butyl-9, 10-bis-β-naphthyl)-anthracene as an emitting layer, we fabricate a high-efficiency and long-lifetime blue organic light emitting diode with a maximum external quantum efficiency of 6.19% and a stable lifetime at a high initial current density of 0.0375 A/cm2. We demonstrate that the change in the thicknesses of organic layers affects the operating voltage and luminous efficiency greater than the lifetime. The lifetime being independent of thickness is beneficial in achieving high-quality full-colour display devices and white lighting sources with multi-emitters.
基金Supported by the National Natural Science Foundation of China under Grant Nos 21174016 and 11474017the Doctoral Program of Higher Education of China under Grant No 20120009110031
文摘Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the doping density of the PSCs. It is shown that the processing of DIO does not change the doping density of the P3HT phase, while it causes a dramatic reduction of the doping density of the PCBM phase, which decreases the doping density of the whole blend layer from 3.7 × 10^16 cm-3 to 1.2 ×10^16 cm-3. The reduction of the doping density in the PCBM phase originates from the increasing crystallinity of PCBM with DIO addition, and it leads to a decreasing doping density in the blend film and improves the short circuit current of the PSCs.
基金Supported by the National Natural Science Foundation of China under Grant No U1301243the National Key Research and Development Program of China under Grant No 2016YFB0400701
文摘We report a simple hole-blocking material (biphenyl-3,3'-diyl)bis(diphenylphosphine oxide) (BiPh-m-BiDPO) based on our recent advance. The bis(phosphine oxide) compound shows HOMO/LUMO levels of ∽-6.71/- 2.51 eV. Its phosphorescent spectrum in a solid film features two major emission bands peaking at 2.69 and 2.4eV, corresponding to 0-0 and 01 vibronic transitions, respectively. The measurement of the electron-only devices reveals that BiPh-m-BiDPO possesses electron mobility of 2.28 × 10^-9-3.22× 10^-8cm2 V-1s-1 at E = 2- 5 × 10^5 V/cm. The characterization of the sky blue fluorescent and red phosphorescent pin organic light-emitting diodes (OLEDs) utilizing BiPh-m-BiDPO as the hole blocker shows that its shallow LUMO level as well as the low electron mobility affects significantly the power efficiency and hence operational stability, relative to the luminous efficiency, especially at high luminance. In combination with our recent results, the present study provides an indepth insight on the molecular structure-property correlation in the organic phosphinyl-containing hole-blocking materials.
基金Supported by the National Natural Science Foundation of China under Grant No 60906022the Natural Science Foundation of Tianjin under Grant No 10JCYBJC01100+1 种基金the Scientific Developing Foundation of Tianjin Education Commission under Grant No 2011ZD02the Key Science and Technology Support Program of Tianjin under Grant No 14ZCZDGX00006
文摘We report that a novel exciton feedback effect is observed by introducing the bis(2-methyl-8-quinolinolato)(4- phenylphenolato)Muminum (BAlq) inserted between the emitting layer (EML) and the electron transporting layer in blue organic light emitting diodes. As an exciton feedback layer (EFL), the BAlq does not act as a traditional hole blocking effect. The design of this kind of device structure can greatly reduce excitons' quenching due to accumulated space charge at the exciton formation interface. Meanwhile, the non-radiative energy transfer from EFL to the EML can also be utilized to enhance the excitons' formation, which is confirmed by the test of photolumimescent transient lifetime decay and electroluminescence enhancement of these devices. Accordingly, the optimal device presents the improved performances with the maximum current efficiency of 4.2 cd/A and the luminance of 24600cd/m2, which are about 1.45 times and 1.75 times higher than those of device A (control device) without the EFL, respectively. Simultaneously, the device shows an excellent color stability with a tiny offset of the CIE coordinates (△x = ±0.003, △y = ±0.004) and a relatively lower efficiency roll-off of 26.2% under the driving voltage varying from 3 V to 10 V.
基金Project supported by the National Key Basic Research and Development Program of China(Grant No.2010CB327701)the National Natural Science Foundation of China(Grant No.61275033)
文摘We demonstrate that the electroluminescent performances of organic light-emitting diodes are significantly improved by employing a zinc phthalocyanine (ZnPc)-based composite hole transport layer (c-HTL). The optimum ris-(8-hydroxyquinoline)aluminum (Alq3)-based organic light-emitting diode with a c-HTL exhibits a lower turn-on voltage of 2.8 V, a higher maximum current efficiency of 3.40 cd/A and a higher maximum power efficiency of 1.91 lm/W, which are superior to those of the conventional device (turn-on voltage of 3.8 V, maximum current efficiency of 2.60 cd/A, and maximum power efficiency of 1.21 lm/W). We systematically studied the effects of different kinds of N’-diphenyl-N,N’-bis(1-naphthyl)(1,1’-biphenyl)-4,4’diamine (NPB):ZnPc c-HTL. Meanwhile, we also investigate their mechanisms different from that in the case of using ZnPc as buffer layer. The specific analysis is based on the absorption spectra of the hole transporting material and current density–voltage characteristics of the corresponding hole-only devices.
基金Supported by the National Natural Science Foundation of China under Grant No 11274402the National Basic Research Program of China under Grant No 2012CB933704+1 种基金the Natural Science Foundation of Guangdong Province under Grant No S2012020011003the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT13042
文摘We improve the performance of organic light-emitting diodes (OLEDs) with both a MoO3 hole injection layer (HIL) and a MoO3 doped hole transport layer (HTL), and present a systematical and comparative investigation on these devices. Compared with OLEDs with only MoO3 HIL or MoO3 doped HTL, OLEDs with both MoO3 HIL and MoO3 doped HTL show superior performance in driving voltage, power efficiency, and stability. Based on the typical NPB/Alq3 heterojunction structure, OLEDs with both MoO3 HIL and MoO3 doped HTL show a driving voltage of 5.4 V and a power efficiency of 1.41 lm/W for 1000 cd/m2, and a lifetime of around 0. 88 h with an initial luminance of 5268 cd/m2 under a constant current of 190 mA/cm2 operation in air without encapsulation. While OLEDs with only MoO3 HIL or MoO3 doped HTL show higher driving voltages of 6.4 V or 5.8 V and lower power efficiencies of 1.201m/W or 1.341m/W for 1000cd/m2, and a shorter lifetime of 0.33 or 0.60h with an initial luminance of around 5122 or 5300cd/m2 under a constant current of 200 or 216mA/cm2 operation. Our results demonstrate clearly that using both MoO3 HIL and MoO3 doped HTL is a simple and effective approach to simultaneoasly improve both the hole injection and transport efficiency, resulting from the lowered energy barrier at the anode interface and the increased hole carrier density in MoO3 doped HTL.
基金supported by the National Natural Science Foundation of China(Nos.22075193 and 22072101)the Natural Science Foundation of Jiangsu Province(Nos.BK20221239,BK20211306,and BK20220027)+1 种基金the Six Talent Peaks Project in Jiangsu Province(No.TD-XCL-006)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Assembly of two-dimensional(2D)metal–organic layers(MOLs)based on the hard and soft acid–base theorem represents an exquisite strategy for the construction of photocatalytic platforms in virtue of the highly exposed active sites,much improved mass transport,and greatly elevated stability.Herein,nanocages composed of MOLs are produced for the first time through a cosolvent approach utilizing zirconium-based UiO-66-(OH)2 as the structural precursor.To endow the catalytic activity for CO_(2) conversion,single atomic Co^(2+)sites are appended to the Zr-oxo nodes of the MOL cages,demonstrating a remarkable CO yield of 7.74 mmol·g^(-1)·h^(-1) and operational stability of 97.1%product retention after five repeated cycles.Such an outstanding photocatalytic performance is mainly attributed to the unique nanocage morphology comprising enormous 2D nanosheets for augmented Co^(2+)exposure and the abundant surface hydroxyl groups for local CO_(2) enrichment.This work underlines the tailoring of both metal–organic framework(MOF)morphology and functionality to boost the turnover rate of photocatalytic CO_(2) reduction reaction(CO_(2)RR).
基金financially supported by the National Research Laboratory Project of the National Research Foundation funded by the Ministry of Science and ICT,Republic of Korea(NRF-2020R1A2C2004192)G.Y.H.for research support via the YGY Project(YGY20150627000)supported by National Research Foundation(NRF)of South Korea(2022R1A2C1004392)。
文摘Heterocyclic compounds are the promising biological compounds as nature-friendly for the corrosion protection of metallic surface.In this work,three heterocyclic compounds such as 1-azanaphthalene-8-ol(8-AN),2-methylquinoline-8-ol(8-MQ),and 8-quinolinol-5-sulfonic acid(8-QSA)were used as green compounds,and their anti-corrosion performance for AZ31 Mg in saline water was discussed on the basis of impedance interpretation and surface analysis.Findings found that the electrochemical performance was improved in the order of 8-AN>8-MQ>8-QSA,demonstrating the electron donor effect of N-heterocycles to form coordination complexes on the magnesium surface.From the electrochemical performance,the protective layer constructed at the optimal concentration reinforces the barrier against aggressive environments,with potential inhibition efficiency of 87.4%,99.0%,and 99.9%for 8-QSA,8-MQ,and 8-AN,respectively.Quantum chemical parameters and electron density distribution for free organic species in the absence and presence of Mg^(2+)cation were evaluated using density functional theory(DFT).Upon the formation of coordination complexes between organic compound and Mg^(2+),energy gap underwent change about ΔE=5.7 eV in the 8-AN/Mg^(2+)system.Furthermore,the adsorption of heterocyclic compounds on Mg surface reveals the formation of strong covalent bonds with Mg atoms,which further confirmed by the electron density difference and projected density of states analyses.Based on theoretical calculations,three inhibitors can adsorb on the metal surface in both parallel and perpendicular orientations via C,O and N atoms.In the parallel configuration,the C-Mg,N-Mg and O-Mg bond distances are between 2.11 and 2.25˚A,whereas the distances in the case of perpendicular adsorption are between 2.20 and 2.40˚A(covalent bonds via O and N atoms).The results indicated that parallel configurations are energetically more stable,in which the adsorption energies are-4.48 eV(8-AN),-4.28 eV(8-MQ)and-3.82 eV(8-QSA)compared to that of perpendicular adsorption(-3.65,-3.40,and-2.63 eV).As a result,experimental and theoretical studies were in well agreement and confirm that the nitrogen and oxygen atoms will be the main adsorption sites.
文摘In this study, we investigate some main electrical parameters of the gold/poly(3-hexylthiophene):[6,6]-phenyl C61 bu- tyric acid methyl ester:2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane/n-type silicon (Au/P3HT:PCBM:F4-TCNQ/n- Si) metal-polymer-semiconductor (MPS) Schottky barrier diode (SBD) in terms of the effects of F4-TCNQ concentration (0%, 1%, and 2%). F4-TCNQ-doped P3HT:PCBM is fabricated to figure out the p-type doping effect on the device per- formance. The main electrical parameters, such as ideality factor (n), barrier height (ФB0), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss) are determined from the forward and reverse bias current-voltage (l-V) characteristics in the dark and at room temperature. The values of n, Rs, ФB0, and Nss are significantly reduced by using the 1% F4-TCNQ doping in P3HT:PCBM:F4-TCNQ organic blend layer, additionally, the carrier mobility and current are increased by the soft (1%) doping. The most ideal values of electrical parameters are obtained for 1% F4-TCNQ used diode. On the other hand, the carrier mobility and current for the hard doping (2%) become far away from the ideal diode values due to the unbalanced generation of holes/electrons and doping-induced disproportion when compared with 1% F4-TCNQ doping. These results show that the electrical properties of MPS SBDs strongly depend on the F4-TCNQ doping and doping concentration of interfacial P3HT:PCBM:F4-TCNQ organic layer. Moreover, the soft F4-TCNQ dop- ing concentration (1%) in P3HT:PCBM:F4-TCNQ organic layer significantly improves the electrical characteristics of the Au/P3HT:PCBM:F4-TCNQ/n-Si (MPS) SBDs which enables the fabricating of high-quality electronic and optoelectronic devices.
基金funding from the Italian Ministry of Economic Development(MISE)in the framework of the Operating Agreement with ENEA for Research on the Electric Systemfrom the Italian Ministry of University and Research(MUR)in the framework of“BEST4U”Project,PON R&I 2014-2020.L.V.,M.S.+2 种基金A.D.C.were supported by the European Union's Horizon 2020 Framework Program for funding Research and Innovation under grant agreement no.764047(ESPResSo)no.691664(UNIQUE,Cofund ERANET Action,MUR GA 775970)no.826013(IMPRESSIVE).C.C.and A.S.acknowledge MIUR Grant—Department of Excellence 2018-2022 and the European Union's Horizon 2020 Framework Program for funding Research and Innovation under grant agreement no.764047(ESPResSo).
文摘During the last decade,perovskite solar technologies underwent an impressive development,with power conversion efficiencies reaching 25.5%for single-junction devices and 29.8%for Silicon-Perovskite tandem configurations.Even though research mainly focused on improving the efficiency of perovskite photovoltaics(PV),stability and scalability remain fundamental aspects of a mature photovoltaics technology.For n-i-p structure perovskite solar cells,using poly-triaryl(amine)(PTAA)as hole transport layer(HTL)allowed to achieve marked improvements in device stability compared with other common hole conductors.For p-i-n structure,poly-triaryl(amine)is also routinely used as dopant-free hole transport layer,but problems in perovskite film growth,and its limited resistance to stress and imperfect batch-to-batch reproducibility,hamper its use for device upscaling.Following previous computational investigations,in this work,we report the synthesis of two small-molecule organic hole transport layers(BPT-1,2),aiming to solve the above-mentioned issues and allow upscale to the module level.By using BPT-1 and methylammonium-free perovskite,max.Power conversion efficiencies of 17.26%and 15.42%on a small area(0.09 cm^(2))and mini-module size(2.25 cm^(2)),respectively,were obtained,with a better reproducibility than with poly-triaryl(amine).Moreover,BPT-1 was demonstrated to yield more stable devices compared with poly-triaryl(amine)under ISOS-D1,T1,and L1 accelerated life-test protocols,reaching maximum T_(90)values>1000 h on all tests.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0707003 and 2019YFE0114100)the National Natural Science Foundation of China (Grant No. 51872007)Beijing Municipal Natural Science Foundation, China (Grant No. 7202094)。
文摘As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency(PCE) and the stability of perovskite solar cells(PSCs). Suitable interface design can dramatically passivate interface defects and optimize energy level alignment for suppressing the nonradiative recombination and effectively extracting the photogenerated carriers towards higher PCE. Meanwhile, a proper interface design can also block the interface diffusion of ions for high operational stability. Therefore, interface modification is of great significance to make the PSCs more efficient and stable. Upon optimized material choices, the three-dimensional halide perovskite graded junction layer, low-dimensional halide perovskite interface layer and organic salt passivation layer have been constructed on perovskite films for superior PSCs, yet a systematic review of them is missing. Thus, a guide and summary of recent advances in modulating the perovskite films interface is necessary for the further development of more efficient interface modification.
基金financially supported by National Natural Science Foundation of China (Nos. 22072101, 22075193, 51911540473)Natural Science Research Project of Jiangsu Higher Education Institutions of China (No. 18KJA480004)+2 种基金the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau (No. SYG201934)Six Talent Peaks Project in Jiangsu Province (No. TD-XCL-006)Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions。
文摘The development of robust photocatalytic systems is key to harvest the solar power for hydrogen production. In the current study, a series of aluminum-based porphyrinic metal organic frameworks (AlTCPP) with various morphologies of bulk, carambola-like and nanosheets are synthesized with modulated layer thickness. Morphology-dependent photocatalytic activities in hydrogen production are witnessed and inversely correlate to the thickness of the Al-TCPP micro-platelets or nanosheets. Particularly, the exfoliated metal organic layers (MOLs) of Al-TCPP demonstrated a high hydrogen yield rate of 1.32×10^(4)μmol h^(-1)g^(-1)that is 21-fold of that from the bulk catalyst, as well as an exceptional TON of6704 that seldom seen in literature. Through comprehensive photochemical characterizations, the remarkable photocatalytic performance of Al-TCPP-MOL is attributed to the great charge separation efficiency and transfer kinetics endowed by the ultrathin 2D morphology with extended active surface area.
基金This research project entitled"Development of High-efficient White Organic Light-emitting Diodes for Lighting Application"was supported by Korea Industry Foundation
文摘High-performance blue organic light-emitting diodes (OLEDs) are developed. A concept of using multiple-emissive layer (EML) configuration is adopted. In this letter, bis(2-methyl-8-quinolinolate)-4- (phenylphenolato)A1 (BAlq) and 9,10-di(naphtha-2-yl)anthracene (ADN), which serve n- and p-type EMLs, respectively, are used to evaluate and demonstrate the multi-EML concept for blue OLEDs. The thickness effect of individual EMLs and the number of EMLs, e.g., triple and quadruple EML components, on the power efficiency of blue OLEDs are systematically investigated. To illustrate the point, the total thickness of the emissive region in different blue OLEDs are kept contact at 30 nm for comparison. The power efficiency of blue OLEDs with a quadruple EML structure of BAlq/ADN/BAlq/ADN is about 40% higher than that of blue OLEDs having a single EML unit. The Commission Internationale deL'eclairage color coordinates of multi-EML OLEDs have values that represent the average of blue emissions from individual EMLs of BAlq and ADN.
基金supported by the National Natural Science Foundation of China(No.61076065)the Natural Science Foundation of Tianjin City,China(No.07JCYBJC12700)
文摘We investigated the properties of C_(60)-based organic field-enect transistors(OFETs)(?) a pentacene passivation layer inserted between the C_(60) active layer and the gate dielectric.After modification of the pentacene passivation layer,the performance of the devices was considerably improved compared to C_(60)-based OFETs with only a PMMA dielectric.The peak field-effect mobility was up to 1.01 cm^2/(V·s) and the on/off ratio shifted to 10~4.This result indicates that using a pentacene passivation layer is an effective way to improve the performance of N-type OFETs.
基金This research was funded by R&D center of BOE Technology Group Co.,Ltd.(No.40009862).
文摘The relative balance of electron and hole injection is crucial for the achievement of highly efficient quantum dot(QD)lightemitting diodes(QLEDs).Here,an inverted red QLED with the utilization of an organic emitting layer(EML)was obtained,exhibiting peak current efficiency(CE)and external quantum efficiency(EQE)of 25.63 cd/A and 23.20%,respectively.In the proposed device,the organic EML,which is a blend of fac-tris(2-phenylpyridine)iridium(Ir(ppy)_(3))and 4,4’-bis(N-carbazolyl)-1,1’-biphenyl(CBP),works as an exciton harvester to capture the leaked electrons from QD layer and the injected holes from hole transporting layer(HTL),then affording energy transfer from organic EML to the adjacent QD layer so that the emission of QD is enhanced significantly.At the same time,according to the results of hole-only and electron-only devices,the insertion of organic EML promotes the hole injection,and eliminates excess electrons from QD to HTL,thus leading to a better match of hole and electron injection in the device.On the basis of the above benefits,the optimal QLED with a 10 nm organic EML offered~2-fold improvements of CE and EQE,respectively,relative to the control device.Furthermore,a better operational lifetime of QLEDs based on the organic EML was achieved.
文摘We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B- EML), and Ir(ppy)3:Ir(piq)3 dopants for green:red EML (GR-EML) with N,N'-dicarbazolyl-3, 5-benzene (mCP) as host material. Thicknesses of B-EML and GR-EML are adjusted to form a narrow recombination zone at two EML's interface and charge trapping happens in EML according to wide highest occupied molecular orbital and/or lowest unoccupied molecular orbital energy band gap of mCP and smaller energy band gap of dopants. The total thickness of both EMLs is fixed at 30 nm in the device structure of ITO (150 nm)/MoO3 (2 nm)/N,N'-diphenyl-N,N'-bis(1-naphthyl-phenyl)-(1,1″-biphenyl)-4, 4'-diamine (70 nm)/ meP:Firpic-8.0% (12 nm)/mCP:Ir(ppy)3-3.0%:Ir(piq)3-1.5% (18 nm)/2″,2',2"'-(1,3,5-benzinetriyl)-tris(1- phenyl-l-H-benzimidazole) (30 nm)/8-hydroxyquinolinolato-lithium (2 nm)/A1 (120 nm). White PHOLED shows 18.25 cd/A of luminous efficiency and white color coordinates of (0.358 and 0.378) at 5000 cd/m2 and color stability with slight CIExy change of (0.028 and 0.002) as increasing luminance from 1000 to 5000 cd/m^2.
基金financial support from the 973 program(No.2014CB643503)the National Natural Science Foundation of China(No.21474088)+2 种基金financial support from NSFC(No.21674093)the National 1000 Young Talents Program hosted by China100 Talents Program by Zhejiang University
文摘In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC development, device architecture and material design features, we exemplified the exciting progresses made in field by exploiting organic π-functional materials based hole and electron transport layers(HTLs and ETLs) to enable high-performance PVSCs.
文摘In this Letter, blue phosphorescence organic light-emitting diodes (PHOLEDs) employ structures for electron and/or hole confinement; 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene is used as a hole confinement layer and tris-(phenylpyrazole)iridium [Ir(ppz)3] is utilized for an electron confinement layer (ECL). The electrical and optical properties of the fabricated blue PHOLEDs with various carrier-confinement structures are analyzed. Structures with a large ehergy offset between the carrier confinement and emitting layers enhance the charge-carrier balance in the emitting region, resulting from the effective carrier confinement. The maximum external quantum efficiency of the blue PHOLEDs with the double-ECLs is 24.02% at 1500 cd/m^2 and its luminous efficiency is 43.76 cd/A, which is 70.47% improved compared to the device without a carrier-confinement layer.
基金supported by the Natural Science Foundation of China Program(42001052)Startup Research Funding of Northeast Forest University for Chengdong Leadership(LJ2020-01)+3 种基金Outstanding Young Scholar(YQ2020-10)Natural Science Foundation of China Program(41871052),Joint Key Program of National Natural Science Foundation of China(NSFC)-Heilongjiang Province Joint Foundation for Regional Development(U20A2082)the State Key Laboratory of Frozen Soils Engineering Open Fund Project(SKLFSE201811)Russian Foundation for Basic Research(18-05-00990).
文摘In boreal and arctic regions,forest fires exert great influences on biogeochemical processes,hydrothermal dynamics of the active layer and near-surface permafrost,and subsequent nutrient cycles.In this article,the studies on impacts of forest fires on the permafrost environment are reviewed.These studies indicate that forest fires could result in an irreversible degradation of permafrost,successions of boreal forests,rapid losses of soil carbon stock,and increased hazardous periglacial landforms.After forest fires,soil temperatures rise;active layer thickens;the release of soil carbon and nitrogen enhances,and;vegetation changes from coniferous forests to broad-leaved forests,shrublands or grasslands.It may take decades or even centuries for the fire-disturbed ecosystems and permafrost environment to return to pre-fire conditions,if ever possible.In boreal forest,the thickness of organic layer has a key influence on changes in permafrost and vegetation.In addition,climate warming,change of vegetation,shortening of fire return intervals,and extent of fire range and increasing of fire severity may all modify the change trajectory of the fire-impacted permafrost environment.However,the observations and research on the relationships and interactive mechanisms among the forest fires,vegetation,carbon cycle and permafrost under a changing climate are still inadequate for a systematic impact evaluation.Using the chronosequence approach of evaluating the temporal changes by measuring changes in the permafrost environment at different stages at various sites(possibly representing varied stages of permafrost degradation and modes),multi-source data assimilation and model predictions and simulations should be integrated with the results from long-and short-term field investigations,geophysical investigations and airborne surveys,laboratory testing and remote sensing.Future studies may enable quantitatively assess and predict the feed-back relationship and influence mechanism among organic layer,permafrost and active layer processes,vegetation and soil carbon under a warming climate at desired spatial and temporal scales.The irreversible changes in the boreal and artic forest ecosystem and their ecological and hydrothermal thresholds,such as those induced by forest fires,should be better and systematically studied.