Aim To study the distribution pattern, antineoplastic activity and immunocompetence of a novel organoselenium compound Eb and investigate its in vivo antineoplastic potential. Methods Eb was administered to Kunming ...Aim To study the distribution pattern, antineoplastic activity and immunocompetence of a novel organoselenium compound Eb and investigate its in vivo antineoplastic potential. Methods Eb was administered to Kunming mice (dosage, 0.1 g·kg^(-1)·d^(-1)) intragastrically for 7 successive days. The contents of selenium in heart, liver, spleen, kidneys, lungs, stomach, brain, muscle, and bone were determined by fluorometric method on the eighth day. MTT assay was used to study tumor growth inhibition of Eb in vitro, and lymphocyte transformation, hemolysin formation and phagocytosis assay were used to study its immunocompetence. Results After 7 days′ administration of Eb, the tissue contents of sele-(nium) in liver, spleen, lungs, kidneys, and bone of mice increased, especially those in liver and spleen increased significan-tly, compared with controls; but no significant changes of such contents were found in muscle, heart, brain, and stomach. Eb demonstrated inhibitory effects on human Bel-7402, BGC-823, and Calu-3 cancer cell lines in vitro. Eb also showed ability to enhance lymphocyte transformation and serum hemolysin formation in vitro and increase the phagocytosis of macrophages. Conclusion The validated antitumor and immunostimulatory activities of Eb suggest a hypothesis that Eb may behave as a biological response modifier when used as an antitumor agent. Eb is worthy of further study in developing a new antineoplastic and immunity enhancing agent in the light of its antitumor activity, immunocompetence and specific distribution in liver, lungs, kidneys, bone, and spleen.展开更多
Ethaselen, an organoselenium compound designed and synthesized in the School of Pharmaceutical Sciences, Peking University, has been entitled to independent intellectual property rights both at home and abroad. As one...Ethaselen, an organoselenium compound designed and synthesized in the School of Pharmaceutical Sciences, Peking University, has been entitled to independent intellectual property rights both at home and abroad. As one of the novel antitumor drugs, ethaselen has been extensively studied in Phase I clinical trial, and its biological target is thioredoxin reductase. In this review, we focus on the ethaselen's efficacy and pharmacological actions, including antitumor effects both in vitro and in vivo, and immunologic functions. These research findings not only provide the theoretical basis for the anticancer study of ethaselen, but also guide the clinical trial of ethaselen.展开更多
A novel organoselenium compound,WB(1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]pentane) has indicated anti-tumor activity.Its pharmacokinetic data has never been determined.By using the H22 tumor bearing mous...A novel organoselenium compound,WB(1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]pentane) has indicated anti-tumor activity.Its pharmacokinetic data has never been determined.By using the H22 tumor bearing mouse model,the tissue distribution of WB after single and four consecutive doses(both were 120 mg/kg/d) was explored.The selenium content of the tissues was used as an indicator of WB absorption,distribution and metabolism.The selenium in the heart,liver, spleen,kidneys,lungs,stomach,pancreas,brain,colon,intestine,testes,plasma,and tumor were determined by generation atomic fluorescence spectrometry(AFS).With single or multiple oral administration of WB,the selenium content significantly increased in the liver,stomach,colon,and intestine.The selenium content in the spleen,lungs,pancreas,testes,plasma and tumor also increased compared with the controls;but no significant changes were found in the brain and kidney.WB and its metabolites distributed predominantly in the colon,liver,stomach and intestine,which resulted in a significant increase in the selenium content in both groups.There was no observed significant accumulation of WB in the vital organs.展开更多
Organoseleniums are a class of compounds attracting attention across the globe owing to their Glutathione peroxidase(GPx)mimicry,which confers on them a strong antioxidant activity.Diphenyl diselenide(DPDS)is an Organ...Organoseleniums are a class of compounds attracting attention across the globe owing to their Glutathione peroxidase(GPx)mimicry,which confers on them a strong antioxidant activity.Diphenyl diselenide(DPDS)is an Organoselenium whose GPx mimetic property has been suggested to rely on the oxidation of non-protein or protein thiols critical to the activities of some sulfhydryl enzymes.This study,therefore investigated the GPx mimic/antioxidant property of DPDS as well as the role of thiols of two key sulfhydryl enzymes,cerebral Na^(+)/K^(+)-ATPase(sodium pump)and hepatic delta-aminolevulinic acid dehydratase(δ-ALAD)in the GPx mimicry of DPDS.Albino Wistar rats were euthanized,and the liver and brain were removed and used to assay for the effect of DPDS on lipid peroxidation induced by two prooxidants[Fe2^(+)(10μM)and H2O2,(1 mM)]as well as the activities of the sulfhydryl enzymes.The results revealed that DPDS profoundly(P<0.05)counteracted Fe2^(+)and H2O2-induced lipid peroxidation in the rats’hepatic and cerebral tissues.Furthermore,the results of assay systems for lipid peroxidation and sodium pump revealed that DPDS inhibited Na^(+)/K^(+)-ATPase and lipid peroxidation in the brain tissue homogenates in the same reaction system.A similar result was obtained in the assay system for lipid peroxidation and hepaticδ-ALAD as DPDS simultaneously inhibited the enzyme’s activity and lipid peroxidation.This suggests that the GPx mimetic property of DPDS may be linked to the enzymes’loss of activity,which further validates the suggestions that the enzymes’inhibition,as well as the antioxidant action of DPDS,rely on the oxidation of critical thiols of the enzymes.However,the GPx mimicry of DPDS should be investigated in the presence of thiol-blocking or oxidizing agents in biological systems in order to further ascertain the role of protein thiols.展开更多
文摘Aim To study the distribution pattern, antineoplastic activity and immunocompetence of a novel organoselenium compound Eb and investigate its in vivo antineoplastic potential. Methods Eb was administered to Kunming mice (dosage, 0.1 g·kg^(-1)·d^(-1)) intragastrically for 7 successive days. The contents of selenium in heart, liver, spleen, kidneys, lungs, stomach, brain, muscle, and bone were determined by fluorometric method on the eighth day. MTT assay was used to study tumor growth inhibition of Eb in vitro, and lymphocyte transformation, hemolysin formation and phagocytosis assay were used to study its immunocompetence. Results After 7 days′ administration of Eb, the tissue contents of sele-(nium) in liver, spleen, lungs, kidneys, and bone of mice increased, especially those in liver and spleen increased significan-tly, compared with controls; but no significant changes of such contents were found in muscle, heart, brain, and stomach. Eb demonstrated inhibitory effects on human Bel-7402, BGC-823, and Calu-3 cancer cell lines in vitro. Eb also showed ability to enhance lymphocyte transformation and serum hemolysin formation in vitro and increase the phagocytosis of macrophages. Conclusion The validated antitumor and immunostimulatory activities of Eb suggest a hypothesis that Eb may behave as a biological response modifier when used as an antitumor agent. Eb is worthy of further study in developing a new antineoplastic and immunity enhancing agent in the light of its antitumor activity, immunocompetence and specific distribution in liver, lungs, kidneys, bone, and spleen.
基金National Natural Science Foundation of China(Grant No.30472036)
文摘Ethaselen, an organoselenium compound designed and synthesized in the School of Pharmaceutical Sciences, Peking University, has been entitled to independent intellectual property rights both at home and abroad. As one of the novel antitumor drugs, ethaselen has been extensively studied in Phase I clinical trial, and its biological target is thioredoxin reductase. In this review, we focus on the ethaselen's efficacy and pharmacological actions, including antitumor effects both in vitro and in vivo, and immunologic functions. These research findings not only provide the theoretical basis for the anticancer study of ethaselen, but also guide the clinical trial of ethaselen.
基金National Major Projects on Drug Research and Technology(Grant No.2009ZX09103-032)
文摘A novel organoselenium compound,WB(1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]pentane) has indicated anti-tumor activity.Its pharmacokinetic data has never been determined.By using the H22 tumor bearing mouse model,the tissue distribution of WB after single and four consecutive doses(both were 120 mg/kg/d) was explored.The selenium content of the tissues was used as an indicator of WB absorption,distribution and metabolism.The selenium in the heart,liver, spleen,kidneys,lungs,stomach,pancreas,brain,colon,intestine,testes,plasma,and tumor were determined by generation atomic fluorescence spectrometry(AFS).With single or multiple oral administration of WB,the selenium content significantly increased in the liver,stomach,colon,and intestine.The selenium content in the spleen,lungs,pancreas,testes,plasma and tumor also increased compared with the controls;but no significant changes were found in the brain and kidney.WB and its metabolites distributed predominantly in the colon,liver,stomach and intestine,which resulted in a significant increase in the selenium content in both groups.There was no observed significant accumulation of WB in the vital organs.
文摘Organoseleniums are a class of compounds attracting attention across the globe owing to their Glutathione peroxidase(GPx)mimicry,which confers on them a strong antioxidant activity.Diphenyl diselenide(DPDS)is an Organoselenium whose GPx mimetic property has been suggested to rely on the oxidation of non-protein or protein thiols critical to the activities of some sulfhydryl enzymes.This study,therefore investigated the GPx mimic/antioxidant property of DPDS as well as the role of thiols of two key sulfhydryl enzymes,cerebral Na^(+)/K^(+)-ATPase(sodium pump)and hepatic delta-aminolevulinic acid dehydratase(δ-ALAD)in the GPx mimicry of DPDS.Albino Wistar rats were euthanized,and the liver and brain were removed and used to assay for the effect of DPDS on lipid peroxidation induced by two prooxidants[Fe2^(+)(10μM)and H2O2,(1 mM)]as well as the activities of the sulfhydryl enzymes.The results revealed that DPDS profoundly(P<0.05)counteracted Fe2^(+)and H2O2-induced lipid peroxidation in the rats’hepatic and cerebral tissues.Furthermore,the results of assay systems for lipid peroxidation and sodium pump revealed that DPDS inhibited Na^(+)/K^(+)-ATPase and lipid peroxidation in the brain tissue homogenates in the same reaction system.A similar result was obtained in the assay system for lipid peroxidation and hepaticδ-ALAD as DPDS simultaneously inhibited the enzyme’s activity and lipid peroxidation.This suggests that the GPx mimetic property of DPDS may be linked to the enzymes’loss of activity,which further validates the suggestions that the enzymes’inhibition,as well as the antioxidant action of DPDS,rely on the oxidation of critical thiols of the enzymes.However,the GPx mimicry of DPDS should be investigated in the presence of thiol-blocking or oxidizing agents in biological systems in order to further ascertain the role of protein thiols.
文摘目的:检测新型有机硒化合物双硒唑烷-1(Ethaselen-1,Eb1)的动物体内免疫调节作用。方法:建立Lew-is肺癌(Lew is lung cancer,LLC)皮下移植瘤C57/BL鼠动物模型,选取25.0 mg/kg和12.5 mg/kg两个剂量的Eb1作为实验药物,以左旋咪唑(levam isole,LMS)2.0 mg/kg作为阳性对照,以溶剂5 g/L羧甲基纤维素钠溶液为阴性对照,于接种肿瘤后第2天开始向C57/BL鼠腹腔连续注射7 d药物,探讨Eb1对正常及肿瘤鼠的相对脾重、脾淋巴细胞转化活性、自然杀伤(natural k iller,NK)细胞活性、淋巴因子-激活杀伤(lymphok ine-activated k iller,LAK)细胞活性及淋巴细胞CD4+,CD8+亚群阳性细胞百分数的影响。结果:高剂量Eb1能够使正常鼠和肿瘤鼠的相对脾重增加150.59%和122.55%,脾淋巴细胞转化活性增加162.25%和561.98%,NK细胞活性增加78.60%和219.42%,脾淋巴细胞CD4-CD8+亚群阳性细胞百分含量增加104.72%和105.87%,高剂量Eb1亦能使肿瘤鼠的LAK细胞活性增加195.11%,与对照组相比差异均有统计学意义(P<0.01)。结论:新型有机硒化合物Eb1在C57/BL小鼠体内具有明显的免疫调节作用。