The quasiclassical trajectory method is used to study the vector correlations of the reactions Ca+RBr (R=CH3, C2H5 and n-C3H7Br) and the rotational alignment of product CaBr. The product rotational alignment parame...The quasiclassical trajectory method is used to study the vector correlations of the reactions Ca+RBr (R=CH3, C2H5 and n-C3H7Br) and the rotational alignment of product CaBr. The product rotational alignment parameters at different collision energies and the vector correlations between the reagent and product are numerically calculated. The vector correlations are described by using the angle distribution functions P(θr), P(φr), P(θr, φr) and the polarization-dependent differential cross sections (PDDCSs). The peak values of P(θr) of the product CaBr from Ca+CH3Br are larger than those from Ca+C2H5Br and Ca+n-C3H7Br. The peak of P(θr) at φr= 3π/2 is apparently stronger than that at φr= x/2 for the three reactions Ca+RBr. The calculation results show that the rotational angular momentum of the product CaBr is not only aligned, but also oriented along the direction which is perpendicular to the scattering plane.The product CaBr molecules are strongly scattered forward. The orientation and alignment of the product angular momentum will affect the scattering direction of the product molecules to varying degrees.展开更多
In this Letter, we study the molecular alignment and orientation driven by two elliptically polarized laser pulses.It is shown that the field-free molecular alignment can be achieved in a three-dimensional(3D) case,...In this Letter, we study the molecular alignment and orientation driven by two elliptically polarized laser pulses.It is shown that the field-free molecular alignment can be achieved in a three-dimensional(3D) case, while the field-free molecular orientation is only along the x and y directions, and that the field-free alignment and orientation along different axes are related to the populations of the rotational states. It is demonstrated that changing the elliptic parameter is efficient for controlling both in-pulse and post-pulse molecular alignment and orientation. The delay time also has an influence on the field-free molecular alignment and orientation.展开更多
We investigated the effect of aligning crystal orientation in the microstructures containing sub micro-sized grains on the thermoelectric properties for polycrystalline Bi-Te materials.Bi-Te powder,prepared through th...We investigated the effect of aligning crystal orientation in the microstructures containing sub micro-sized grains on the thermoelectric properties for polycrystalline Bi-Te materials.Bi-Te powder,prepared through the conventional pulverization process,was sufficiently dispersed in an appropriate solvent,and then was formed into c-axis aligned green bodies under a designated high magnetic field.The green bodies were sintered with spark-plasma-sintering machine.The degree of crystal alignment of sintered bodies was examined with the electron-back-scatter-diffraction SEM and the X-ray diffraction patterns.It was observed that for both p and n type thermoelectric Bi-Te materials,aligning crystal orientation properly made electrical resistivity decreased with keeping Seebeck coefficient and thermal conductivity remained unchanged.As a typical result,the aligned Bi-Te material with the magnetic field of 10 tesla showed 30%enhancement of the thermoelectric performance.展开更多
This study shows the unexpected and counterintuitive possibility of simultaneously orienting a molecule while delocalizing its molecular axis in a plane in field-free conditions.The corresponding quantum states are ch...This study shows the unexpected and counterintuitive possibility of simultaneously orienting a molecule while delocalizing its molecular axis in a plane in field-free conditions.The corresponding quantum states are characterized,and different control strategies using shaped terahertz(THz)laser pulses are proposed to reach such states at zero and nonzero temperatures.The robustness against temperature effects of a simple control procedure combining a laser and a THz pulse is shown.Such control strategies can be applied not only to linear molecules but also to symmetric top molecules.展开更多
The bonded MoS_(2)solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel.In this work,the amino functionalized MoS_(2)was protonated with acetic acid to make the MoS_(2)positi...The bonded MoS_(2)solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel.In this work,the amino functionalized MoS_(2)was protonated with acetic acid to make the MoS_(2)positively charged.The directional arrangement of protonated MoS2 in the coating was achieved by electrophoretic deposition under the electric field force.The bonded directionally aligned MoS_(2)solid lubricant coating showed high adaptability to various loads and excellent lubrication performance under all three working conditions.At a load of 10 N,the friction coefficient and wear volume of the coating with 5 wt%protonated MoS_(2)decreased by 20.0%and 37.2%compared to the pure epoxy coating,respectively,and by 0.07%and 16.8%than the randomly arranged MoS_(2)sample,respectively.The remarkable lubricating properties of MoS_(2)with directional alignment were attributed to its effective load-bearing and mechanical support,barrier effect on longitudinal extension of cracks,and the formation of a continuous and uniform transfer film.展开更多
Molecular alignment and orientation by laser fields has attracted significant attention in recent years,mostly due to new capabilities to manipulate the molecular spatial arrangement.Molecules can now be efficiently p...Molecular alignment and orientation by laser fields has attracted significant attention in recent years,mostly due to new capabilities to manipulate the molecular spatial arrangement.Molecules can now be efficiently prepared for ionization,structural imaging,orbital tomography,and more,enabling,for example,shooting of dynamic molecular movies.Furthermore,molecular alignment and orientation processes give rise to fundamental quantum and classical phenomena like quantum revivals,Anderson localization,and rotational echoes,just to mention a few.We review recent progress on the visualization,coherent control,and applications of the rich dynamics of molecular rotational wave packets driven by laser pulses of various intensities,durations,and polarizations.In particular,we focus on the molecular unidirectional rotation and its visualization,the orientation of chiral molecules,and the three-dimensional orientation of asymmetric-top molecules.Rotational echoes are discussed as an example of nontrivial dynamics and detection of prepared molecular states.展开更多
High strength and high toughness are vital for fibers’engineering applications,but are hard to simultaneously achieve.Herein,we synthesize a carbon nanotube(CNT)-thermoplastic polyurethanes(TPU)fiber reinforced by an...High strength and high toughness are vital for fibers’engineering applications,but are hard to simultaneously achieve.Herein,we synthesize a carbon nanotube(CNT)-thermoplastic polyurethanes(TPU)fiber reinforced by an amorphous ZrO_(2)layer through the wet-spinning method.The amorphous ZrO_(2)layer is in-situ grown on the surface of CNT and the hybrid nanowires are orientedly aligned with TPU to form the ternary fiber.The fiber possesses an excellent combination of high strength(84.6 MPa)and toughness(126.7 MJ/m^(3)),which is outstanding when compared with previously reported CNT-TPU fibers.The pull-out of nanowires attributed to the oriented alignment structure and the enhanced interface and restriction of deformation obtained from the amorphous ZrO_(2)layer are considered as the primary strengthening and toughening mechanisms.We anticipate that our fiber synthesis strategy gives a new path to design strong and tough fibers.展开更多
Here, we report on hierarchical mechanical behavior of 500-nm-thick Conanocrystal 3D superlattices (supracrystals) induced by either the crystalline structure (nanocrystallinity) or the length of the coating agent...Here, we report on hierarchical mechanical behavior of 500-nm-thick Conanocrystal 3D superlattices (supracrystals) induced by either the crystalline structure (nanocrystallinity) or the length of the coating agent of Co nanocrystals. Increasing the nanocrystal shape anisotropy of Co nanocrystals through the control of their nanocrystallinities induces a higher level of ordering with both translational and orientational alignment of nanocrystals within the supracrystals. The hierarchy in ordering at various scales, i.e., from the atomic lattice within the nanocrystals to the nanocrystal superlattices within supracrystals, is correlated with marked changes in the Young's modulus of supracrystals: From 0.7 ±0.4 to 1.7 ±0.5 and to 6.6 ±1.5 GPa as the crystalline structure of Co nanoparticles changes from amorphous-Co to ε-Co and to hexagonal compact packing (hcp)-Co, respectively. Moreover, for supracrystals of 7 nm amorphous Co nanoparticles, the Young's modulus decreases by one order of magnitude from 0.7 ±0.4 to 0.08 ±0.03 GPa upon reducing the alkyl chain length of the ligands coating the Co nanoparticles from C18 (oleic acid) to C12 (lauric acid). The hierarchical mechanical behavior is rationalized using a dimensional model of the stress-strain relationship in supracrystals.展开更多
基金This work is supported by the National Natural Science Foundation of China (No.10374012).
文摘The quasiclassical trajectory method is used to study the vector correlations of the reactions Ca+RBr (R=CH3, C2H5 and n-C3H7Br) and the rotational alignment of product CaBr. The product rotational alignment parameters at different collision energies and the vector correlations between the reagent and product are numerically calculated. The vector correlations are described by using the angle distribution functions P(θr), P(φr), P(θr, φr) and the polarization-dependent differential cross sections (PDDCSs). The peak values of P(θr) of the product CaBr from Ca+CH3Br are larger than those from Ca+C2H5Br and Ca+n-C3H7Br. The peak of P(θr) at φr= 3π/2 is apparently stronger than that at φr= x/2 for the three reactions Ca+RBr. The calculation results show that the rotational angular momentum of the product CaBr is not only aligned, but also oriented along the direction which is perpendicular to the scattering plane.The product CaBr molecules are strongly scattered forward. The orientation and alignment of the product angular momentum will affect the scattering direction of the product molecules to varying degrees.
基金supported by the National Natural Science Foundation of China(No.11674198)the Taishan Scholar Project of Shandong Province
文摘In this Letter, we study the molecular alignment and orientation driven by two elliptically polarized laser pulses.It is shown that the field-free molecular alignment can be achieved in a three-dimensional(3D) case, while the field-free molecular orientation is only along the x and y directions, and that the field-free alignment and orientation along different axes are related to the populations of the rotational states. It is demonstrated that changing the elliptic parameter is efficient for controlling both in-pulse and post-pulse molecular alignment and orientation. The delay time also has an influence on the field-free molecular alignment and orientation.
基金Item Sponsored by Energy Efficiency&Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Knowledge Economy,Republic of Korea(2007EID11P050000)the DGIST Basic Research Program of the Ministry of Education,Science and Technology(MoEST),Republic of Korea(12-EN-01)
文摘We investigated the effect of aligning crystal orientation in the microstructures containing sub micro-sized grains on the thermoelectric properties for polycrystalline Bi-Te materials.Bi-Te powder,prepared through the conventional pulverization process,was sufficiently dispersed in an appropriate solvent,and then was formed into c-axis aligned green bodies under a designated high magnetic field.The green bodies were sintered with spark-plasma-sintering machine.The degree of crystal alignment of sintered bodies was examined with the electron-back-scatter-diffraction SEM and the X-ray diffraction patterns.It was observed that for both p and n type thermoelectric Bi-Te materials,aligning crystal orientation properly made electrical resistivity decreased with keeping Seebeck coefficient and thermal conductivity remained unchanged.As a typical result,the aligned Bi-Te material with the magnetic field of 10 tesla showed 30%enhancement of the thermoelectric performance.
文摘This study shows the unexpected and counterintuitive possibility of simultaneously orienting a molecule while delocalizing its molecular axis in a plane in field-free conditions.The corresponding quantum states are characterized,and different control strategies using shaped terahertz(THz)laser pulses are proposed to reach such states at zero and nonzero temperatures.The robustness against temperature effects of a simple control procedure combining a laser and a THz pulse is shown.Such control strategies can be applied not only to linear molecules but also to symmetric top molecules.
基金the financial support of National Natural Science Foundation of China(Nos.52075458 and U2141211)Sichuan Science Foundation for Distinguished Young Scholars(No.2023NSFSC1957)the Analytical and Testing Center of Southwest Jiaotong University for support of the scanning electron microscopy(SEM)and Raman measurements.
文摘The bonded MoS_(2)solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel.In this work,the amino functionalized MoS_(2)was protonated with acetic acid to make the MoS_(2)positively charged.The directional arrangement of protonated MoS2 in the coating was achieved by electrophoretic deposition under the electric field force.The bonded directionally aligned MoS_(2)solid lubricant coating showed high adaptability to various loads and excellent lubrication performance under all three working conditions.At a load of 10 N,the friction coefficient and wear volume of the coating with 5 wt%protonated MoS_(2)decreased by 20.0%and 37.2%compared to the pure epoxy coating,respectively,and by 0.07%and 16.8%than the randomly arranged MoS_(2)sample,respectively.The remarkable lubricating properties of MoS_(2)with directional alignment were attributed to its effective load-bearing and mechanical support,barrier effect on longitudinal extension of cracks,and the formation of a continuous and uniform transfer film.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0306303)the National Natural Science Foundation of China(Grants Nos.11834004,61690224,and 11761141004)+6 种基金the 111 Project of China(Grant No.B12024)the Projects from Shanghai Science and Technology Commission(No.19JC1412200)ISF-NSFC joint research program(Grant No.2520/17),CNRSthe ERDF Operational Program-Burgundythe EIPHI Graduate School(Contract No.ANR-17-EURE-0002)the Associate(CNRS&Weizmann)International ImagiNano LaboratoryIsrael Science Foundation(Grant No.746/15).
文摘Molecular alignment and orientation by laser fields has attracted significant attention in recent years,mostly due to new capabilities to manipulate the molecular spatial arrangement.Molecules can now be efficiently prepared for ionization,structural imaging,orbital tomography,and more,enabling,for example,shooting of dynamic molecular movies.Furthermore,molecular alignment and orientation processes give rise to fundamental quantum and classical phenomena like quantum revivals,Anderson localization,and rotational echoes,just to mention a few.We review recent progress on the visualization,coherent control,and applications of the rich dynamics of molecular rotational wave packets driven by laser pulses of various intensities,durations,and polarizations.In particular,we focus on the molecular unidirectional rotation and its visualization,the orientation of chiral molecules,and the three-dimensional orientation of asymmetric-top molecules.Rotational echoes are discussed as an example of nontrivial dynamics and detection of prepared molecular states.
基金This work was supported by the National Key R&D Program of China(Nos.2020YFA0710403,2020YFA0710404)the National Natural Science Foundation of China(Nos.52073008,U1910208).
文摘High strength and high toughness are vital for fibers’engineering applications,but are hard to simultaneously achieve.Herein,we synthesize a carbon nanotube(CNT)-thermoplastic polyurethanes(TPU)fiber reinforced by an amorphous ZrO_(2)layer through the wet-spinning method.The amorphous ZrO_(2)layer is in-situ grown on the surface of CNT and the hybrid nanowires are orientedly aligned with TPU to form the ternary fiber.The fiber possesses an excellent combination of high strength(84.6 MPa)and toughness(126.7 MJ/m^(3)),which is outstanding when compared with previously reported CNT-TPU fibers.The pull-out of nanowires attributed to the oriented alignment structure and the enhanced interface and restriction of deformation obtained from the amorphous ZrO_(2)layer are considered as the primary strengthening and toughening mechanisms.We anticipate that our fiber synthesis strategy gives a new path to design strong and tough fibers.
文摘Here, we report on hierarchical mechanical behavior of 500-nm-thick Conanocrystal 3D superlattices (supracrystals) induced by either the crystalline structure (nanocrystallinity) or the length of the coating agent of Co nanocrystals. Increasing the nanocrystal shape anisotropy of Co nanocrystals through the control of their nanocrystallinities induces a higher level of ordering with both translational and orientational alignment of nanocrystals within the supracrystals. The hierarchy in ordering at various scales, i.e., from the atomic lattice within the nanocrystals to the nanocrystal superlattices within supracrystals, is correlated with marked changes in the Young's modulus of supracrystals: From 0.7 ±0.4 to 1.7 ±0.5 and to 6.6 ±1.5 GPa as the crystalline structure of Co nanoparticles changes from amorphous-Co to ε-Co and to hexagonal compact packing (hcp)-Co, respectively. Moreover, for supracrystals of 7 nm amorphous Co nanoparticles, the Young's modulus decreases by one order of magnitude from 0.7 ±0.4 to 0.08 ±0.03 GPa upon reducing the alkyl chain length of the ligands coating the Co nanoparticles from C18 (oleic acid) to C12 (lauric acid). The hierarchical mechanical behavior is rationalized using a dimensional model of the stress-strain relationship in supracrystals.