An optimized workspace calculation method is proposed for parallel stabilized platform testing systems.This method refines the searched space progressively in order to approach the boundary of the workspace from both ...An optimized workspace calculation method is proposed for parallel stabilized platform testing systems.This method refines the searched space progressively in order to approach the boundary of the workspace from both the inside and the outside of it.The orientation density is defined and used as an evaluation index to calculate the orientation workspace.The algorithm of the orientation density is embedded into the computer program of the workspace calculation.Then the workspaces of the testing system are solved.In the solution,the orientation density is regarded as a discrete function of the reachable workspace.As a result,the reachable workspace and the orientation workspace are represented in the same multidimensional graphs.Finally the useful workspace of the testing system is determined based on these results.This case study indicates that the calculation efficiency is enhanced by adopting the optimized method and the practicability of workspace study is improved by proposing the orientation density.展开更多
The purpose of this work was to demonstrate the feasibility of neurite orientation dispersion and density imaging(NODDI)in characterizing the brain tissue microstructural changes of middle cerebral artery occlusion(MC...The purpose of this work was to demonstrate the feasibility of neurite orientation dispersion and density imaging(NODDI)in characterizing the brain tissue microstructural changes of middle cerebral artery occlusion(MCAO)in rats at 3T MRI,and to validate NODDI metrics with histology.A multi-shell diffusion MRI protocol was performed on 11 MCAO rats and 10 control rats at different post-operation time points of 0.5,2,6,12,24 and 72 h.NODDI orientation dispersion index(ODI)and intracellular volume fraction(V_(ic))metrics were compared between MCAO group and control group.The evolution of NODDI metrics was characterized and validated by histology.Infarction was consistent with significantly increased ODI and V_(ic)in comparison to control tissues at all time points(P<0.001).Lesion ODI increased gradually from 0.5 to 72 h,while its V_(ic)showed a more complicated and fluctuated evolution.ODI and V_(ic)were significantly different between hyperacute and acute stroke periods(P<0.001).The NODDI metrics were found to be consistent with the histological findings.In conclusion,NODDI can reflect microstructural changes of brain tissues in MCAO rats at 3T MRI and the metrics are consistent with histology.This study helps to prepare NODDI for the diagnosis and management of ischemic stroke in translational research and clinical practice.展开更多
The prevalence of neurodegenerative diseases is increasing as human longevity increases. The objective biomarkers that enable the staging and early diagnosis of neurodegenerative diseases are eagerly anticipated. It h...The prevalence of neurodegenerative diseases is increasing as human longevity increases. The objective biomarkers that enable the staging and early diagnosis of neurodegenerative diseases are eagerly anticipated. It has recently become possible to determine pathological changes in the brain without autopsy with the advancement of diffusion magnetic resonance imaging techniques. Diffusion magnetic resonance imaging is a robust tool used to evaluate brain microstructural complexity and integrity, axonal order, density, and myelination via the micron-scale displacement of water molecules diffusing in tissues. Diffusion tensor imaging, a type of diffusion magnetic resonance imaging technique is widely utilized in clinical and research settings;however, it has several limitations. To overcome these limitations, cutting-edge diffusion magnetic resonance imaging techniques, such as diffusional kurtosis imaging, neurite orientation dispersion and density imaging, and free water imaging, have been recently proposed and applied to evaluate the pathology of neurodegenerative diseases. This review focused on the main applications, findings, and future directions of advanced diffusion magnetic resonance imaging techniques in patients with Alzheimer's and Parkinson's diseases, the first and second most common neurodegenerative diseases, respectively.展开更多
During the last decades,advances in the understanding of genetic,cellular,and microstructural alterations associated to Huntington's disease(HD)have improved the understanding of this progressive and fatal illness...During the last decades,advances in the understanding of genetic,cellular,and microstructural alterations associated to Huntington's disease(HD)have improved the understanding of this progressive and fatal illness.However,events related to early neuropathological events,neuroinflammation,deterioration of neuronal connectivity and compensatory mechanisms still remain vastly unknown.Ultra-high field diffusion MRI(UHFD-MRI)techniques can contribute to a more comprehensive analysis of the early microstructural changes observed in HD.In addition,it is possible to evaluate if early imaging microstructural parameters might be linked to histological biomarkers.Moreover,qualitative studies analyzing histological complexity in brain areas susceptible to neurodegeneration could provide information on inflammatory events,compensatory increase of neuroconnectivity and mechanisms of brain repair and regeneration.The application of ultra-high field diffusion-MRI technology in animal models,particularly the R6/1 mice(a common preclinical mammalian model of HD),provide the opportunity to analyze alterations in a physiologically intact model of the disease.Although some disparities in volumetric changes across different brain structures between preclinical and clinical models has been documented,further application of different diffusion MRI techniques used in combination like diffusion tensor imaging,and neurite orientation dispersion and density imaging have proved effective in characterizing early parameters associated to alteration in water diffusion exchange within intracellular and extracellular compartments in brain white and grey matter.Thus,the combination of diffusion MRI imaging techniques and more complex neuropathological analysis could accelerate the discovery of new imaging biomarkers and the early diagnosis and neuromonitoring of patients affected with HD.展开更多
基金Supported by the Ministerial Level Advanced Research Foundation (870102056)
文摘An optimized workspace calculation method is proposed for parallel stabilized platform testing systems.This method refines the searched space progressively in order to approach the boundary of the workspace from both the inside and the outside of it.The orientation density is defined and used as an evaluation index to calculate the orientation workspace.The algorithm of the orientation density is embedded into the computer program of the workspace calculation.Then the workspaces of the testing system are solved.In the solution,the orientation density is regarded as a discrete function of the reachable workspace.As a result,the reachable workspace and the orientation workspace are represented in the same multidimensional graphs.Finally the useful workspace of the testing system is determined based on these results.This case study indicates that the calculation efficiency is enhanced by adopting the optimized method and the practicability of workspace study is improved by proposing the orientation density.
基金National Natural Science Foundation of China(No.81570462,No.81730049,and No.81801666).
文摘The purpose of this work was to demonstrate the feasibility of neurite orientation dispersion and density imaging(NODDI)in characterizing the brain tissue microstructural changes of middle cerebral artery occlusion(MCAO)in rats at 3T MRI,and to validate NODDI metrics with histology.A multi-shell diffusion MRI protocol was performed on 11 MCAO rats and 10 control rats at different post-operation time points of 0.5,2,6,12,24 and 72 h.NODDI orientation dispersion index(ODI)and intracellular volume fraction(V_(ic))metrics were compared between MCAO group and control group.The evolution of NODDI metrics was characterized and validated by histology.Infarction was consistent with significantly increased ODI and V_(ic)in comparison to control tissues at all time points(P<0.001).Lesion ODI increased gradually from 0.5 to 72 h,while its V_(ic)showed a more complicated and fluctuated evolution.ODI and V_(ic)were significantly different between hyperacute and acute stroke periods(P<0.001).The NODDI metrics were found to be consistent with the histological findings.In conclusion,NODDI can reflect microstructural changes of brain tissues in MCAO rats at 3T MRI and the metrics are consistent with histology.This study helps to prepare NODDI for the diagnosis and management of ischemic stroke in translational research and clinical practice.
基金supported by research grants from the program for Brain/MINDS Beyond program from the Japan Agency for Medical Research and Development(AMED)under Grant Number JP18dm0307024(to KK)MEXT-Supported Program for the Private University Research Branding Project+1 种基金ImPACT Program of Council for Science,Technology and Innovation(Cabinet Office,Government of Japan)JSPS KAKENHI Grant Number JP16K10327(to KK)
文摘The prevalence of neurodegenerative diseases is increasing as human longevity increases. The objective biomarkers that enable the staging and early diagnosis of neurodegenerative diseases are eagerly anticipated. It has recently become possible to determine pathological changes in the brain without autopsy with the advancement of diffusion magnetic resonance imaging techniques. Diffusion magnetic resonance imaging is a robust tool used to evaluate brain microstructural complexity and integrity, axonal order, density, and myelination via the micron-scale displacement of water molecules diffusing in tissues. Diffusion tensor imaging, a type of diffusion magnetic resonance imaging technique is widely utilized in clinical and research settings;however, it has several limitations. To overcome these limitations, cutting-edge diffusion magnetic resonance imaging techniques, such as diffusional kurtosis imaging, neurite orientation dispersion and density imaging, and free water imaging, have been recently proposed and applied to evaluate the pathology of neurodegenerative diseases. This review focused on the main applications, findings, and future directions of advanced diffusion magnetic resonance imaging techniques in patients with Alzheimer's and Parkinson's diseases, the first and second most common neurodegenerative diseases, respectively.
基金supported in part by the High Magnetic Field Laboratory(NHMFL)and Advanced Magnetic Resonance Imaging and Spectroscopy(AMRIS)under Magnetic Laboratory Visiting Scientist Program Award,No.VSP#327(to RG)。
文摘During the last decades,advances in the understanding of genetic,cellular,and microstructural alterations associated to Huntington's disease(HD)have improved the understanding of this progressive and fatal illness.However,events related to early neuropathological events,neuroinflammation,deterioration of neuronal connectivity and compensatory mechanisms still remain vastly unknown.Ultra-high field diffusion MRI(UHFD-MRI)techniques can contribute to a more comprehensive analysis of the early microstructural changes observed in HD.In addition,it is possible to evaluate if early imaging microstructural parameters might be linked to histological biomarkers.Moreover,qualitative studies analyzing histological complexity in brain areas susceptible to neurodegeneration could provide information on inflammatory events,compensatory increase of neuroconnectivity and mechanisms of brain repair and regeneration.The application of ultra-high field diffusion-MRI technology in animal models,particularly the R6/1 mice(a common preclinical mammalian model of HD),provide the opportunity to analyze alterations in a physiologically intact model of the disease.Although some disparities in volumetric changes across different brain structures between preclinical and clinical models has been documented,further application of different diffusion MRI techniques used in combination like diffusion tensor imaging,and neurite orientation dispersion and density imaging have proved effective in characterizing early parameters associated to alteration in water diffusion exchange within intracellular and extracellular compartments in brain white and grey matter.Thus,the combination of diffusion MRI imaging techniques and more complex neuropathological analysis could accelerate the discovery of new imaging biomarkers and the early diagnosis and neuromonitoring of patients affected with HD.