Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent s...Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.展开更多
The distribution function and orientation tensor of fiber suspensions in wedge shaped flow field were computed . The results indicate that with time increasing, the fiber orient themselves to flow direction graduall...The distribution function and orientation tensor of fiber suspensions in wedge shaped flow field were computed . The results indicate that with time increasing, the fiber orient themselves to flow direction gradually. At the locations with same pole radii, the angle between fiber orientation and centerline, which occurs with the most probability, decreases with the pole angle increasing . At the locations with same pole angle, the angle between fiber orientation and centerline increases with the pole radii decreasing. The second order tensors get steady more quickly at the points where the velocity g radients are larger. At the locations with same pole angle, the steady values of orientation tensors are identical. At the locations with same pole radii is, streamline becomes flatter as the pole angle decreases.展开更多
For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest p...For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest points is proposed to obtain the invariant local features, which is coined polynomial local orientation tensor(PLOT). The new detector is based on image local orientation tensor that is constructed from the polynomial expansion of image signal. Firstly, the properties of local orientation tensor of PLOT are analyzed, and a suitable tuning parameter of local orientation tensor is chosen so as to extract invariant features. The initial interest points are detected by local maxima search for the smaller eigenvalues of the orientation tensor. Then, an iterative procedure is used to allow the initial interest points to converge to affine invariant interest points and regions. The performances of this detector are evaluated on the repeatability criteria and recall versus 1-precision graphs, and then are compared with other existing approaches. Experimental results for PLOT show strong performance under affine transformation in the real-world conditions.展开更多
The stability of wall bounded fibre suspensions was studied. The linear stability analysis was performed applying the flow stability theory and slender body theory. The results of numerical analysis show that fibres...The stability of wall bounded fibre suspensions was studied. The linear stability analysis was performed applying the flow stability theory and slender body theory. The results of numerical analysis show that fibres and their hydrodynamic interactions reinforce the flow stability. Investigation of fibre orientation and vorticity in the suspension revealed the mechanisms behind the instability. Drag reduction properties in the transition regime were also presented. The experiments using dye emission and PIV techniques verified theoretical results.展开更多
The mechanical behavior of non-Newtonian fluids can be modeled by several constitutive differential equations. The Oldroyd model is viewed as one of the successful models for describing the response of a subclass of p...The mechanical behavior of non-Newtonian fluids can be modeled by several constitutive differential equations. The Oldroyd model is viewed as one of the successful models for describing the response of a subclass of polymeric liquids, in particular the non-Newtonian behavior exhibited by these fluids. In this paper, we are concerned with the study of the unsteady flows of an incom-pressible viscoelastic fluid of an Oldroyd-B type in a blood vessel acting on a Brownian force. First we derive the orientation stress tensor considering Hookean dumbbells on Brownian configuration fields. Then we reformulate the three-dimensional Oldroyd-B model with the total stress tensor which consists of the isotropic pressure stress tensor, the shear stress tensor, and the orientation stress tensor. Finally we present the numerical simulations of the model and analyze the effect of the orientation stress tensor in the vessel.展开更多
基金Project(11JJ3080)supported by Natural Science Foundation of Hunan Province,ChinaProject(11CY012)supported by Cultivation in Hunan Colleges and Universities,ChinaProject(ET51007)supported by Youth Talent in Hunan University,China
文摘Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.
基金Project supported by the National Natural Science Foundation for Outstanding Youth of China. (Grant No: 19925210)
文摘The distribution function and orientation tensor of fiber suspensions in wedge shaped flow field were computed . The results indicate that with time increasing, the fiber orient themselves to flow direction gradually. At the locations with same pole radii, the angle between fiber orientation and centerline, which occurs with the most probability, decreases with the pole angle increasing . At the locations with same pole angle, the angle between fiber orientation and centerline increases with the pole radii decreasing. The second order tensors get steady more quickly at the points where the velocity g radients are larger. At the locations with same pole angle, the steady values of orientation tensors are identical. At the locations with same pole radii is, streamline becomes flatter as the pole angle decreases.
基金Projects(61203332,61203208) supported by the National Natural Science Foundation of China
文摘For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest points is proposed to obtain the invariant local features, which is coined polynomial local orientation tensor(PLOT). The new detector is based on image local orientation tensor that is constructed from the polynomial expansion of image signal. Firstly, the properties of local orientation tensor of PLOT are analyzed, and a suitable tuning parameter of local orientation tensor is chosen so as to extract invariant features. The initial interest points are detected by local maxima search for the smaller eigenvalues of the orientation tensor. Then, an iterative procedure is used to allow the initial interest points to converge to affine invariant interest points and regions. The performances of this detector are evaluated on the repeatability criteria and recall versus 1-precision graphs, and then are compared with other existing approaches. Experimental results for PLOT show strong performance under affine transformation in the real-world conditions.
文摘The stability of wall bounded fibre suspensions was studied. The linear stability analysis was performed applying the flow stability theory and slender body theory. The results of numerical analysis show that fibres and their hydrodynamic interactions reinforce the flow stability. Investigation of fibre orientation and vorticity in the suspension revealed the mechanisms behind the instability. Drag reduction properties in the transition regime were also presented. The experiments using dye emission and PIV techniques verified theoretical results.
基金supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) (Grant No. 2009-0074305)
文摘The mechanical behavior of non-Newtonian fluids can be modeled by several constitutive differential equations. The Oldroyd model is viewed as one of the successful models for describing the response of a subclass of polymeric liquids, in particular the non-Newtonian behavior exhibited by these fluids. In this paper, we are concerned with the study of the unsteady flows of an incom-pressible viscoelastic fluid of an Oldroyd-B type in a blood vessel acting on a Brownian force. First we derive the orientation stress tensor considering Hookean dumbbells on Brownian configuration fields. Then we reformulate the three-dimensional Oldroyd-B model with the total stress tensor which consists of the isotropic pressure stress tensor, the shear stress tensor, and the orientation stress tensor. Finally we present the numerical simulations of the model and analyze the effect of the orientation stress tensor in the vessel.