We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based ...We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based on the single-tensor model and the two-tensor model. The directional set of planar voxels contained three tracking directions: two from the two-tensor model and one from the single- tensor model. The directional set of linear voxels contained only one principal vector. In addition, a flexible step size, rather than fixable step sizes, was implemented to improve the accuracy of fiber tracking. We used two sets of human data to assess the performance of our method; one was from a healthy volunteer and the other from a patient with low-grade glioma. Results verified that our method was superior to the single-tensor Fiber Assignment by Continuous Tracking and the two-tensor eXtended Streamline Tractography for showing detailed images of fiber bundles.展开更多
The traditional oriented FAST and rotated BRIEF(ORB) algorithm has problems of instability and repetition of keypoints and it does not possess scale invariance. In order to deal with these drawbacks, a modified ORB...The traditional oriented FAST and rotated BRIEF(ORB) algorithm has problems of instability and repetition of keypoints and it does not possess scale invariance. In order to deal with these drawbacks, a modified ORB(MORB) algorithm is proposed. In order to improve the precision of matching and tracking, this paper puts forward an MOK algorithm that fuses MORB and Kanade-Lucas-Tomasi(KLT). By using Kalman, the object's state in the next frame is predicted in order to reduce the size of search window and improve the real-time performance of object tracking. The experimental results show that the MOK algorithm can accurately track objects with deformation or with background clutters, exhibiting higher robustness and accuracy on diverse datasets. Also, the MOK algorithm has a good real-time performance with the average frame rate reaching 90.8 fps.展开更多
基金supported by the Science and Technology Commission of the Shanghai Municipality of China,No.10dz2211800,No.10XD1421400the National High Technology Research and Development Program,No.2009AA02Z415the Innovation Program of Shanghai Municipal Education Commission,No.11yz292
文摘We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based on the single-tensor model and the two-tensor model. The directional set of planar voxels contained three tracking directions: two from the two-tensor model and one from the single- tensor model. The directional set of linear voxels contained only one principal vector. In addition, a flexible step size, rather than fixable step sizes, was implemented to improve the accuracy of fiber tracking. We used two sets of human data to assess the performance of our method; one was from a healthy volunteer and the other from a patient with low-grade glioma. Results verified that our method was superior to the single-tensor Fiber Assignment by Continuous Tracking and the two-tensor eXtended Streamline Tractography for showing detailed images of fiber bundles.
基金supported by the National Natural Science Foundation of China(61471194)the Fundamental Research Funds for the Central Universities+2 种基金the Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation of China(20155552050)the CASC(China Aerospace Science and Technology Corporation) Aerospace Science and Technology Innovation Foundation Projectthe Nanjing University of Aeronautics And Astronautics Graduate School Innovation Base(Laboratory)Open Foundation Program(kfjj20151505)
文摘The traditional oriented FAST and rotated BRIEF(ORB) algorithm has problems of instability and repetition of keypoints and it does not possess scale invariance. In order to deal with these drawbacks, a modified ORB(MORB) algorithm is proposed. In order to improve the precision of matching and tracking, this paper puts forward an MOK algorithm that fuses MORB and Kanade-Lucas-Tomasi(KLT). By using Kalman, the object's state in the next frame is predicted in order to reduce the size of search window and improve the real-time performance of object tracking. The experimental results show that the MOK algorithm can accurately track objects with deformation or with background clutters, exhibiting higher robustness and accuracy on diverse datasets. Also, the MOK algorithm has a good real-time performance with the average frame rate reaching 90.8 fps.