The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that c...The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%.展开更多
Automatic palmprint identification has received much attention in security applications and law enforcement. The performance of a palmprint identification system is improved by means of feature extraction and classifi...Automatic palmprint identification has received much attention in security applications and law enforcement. The performance of a palmprint identification system is improved by means of feature extraction and classification. Feature extraction methods such as Subspace learning are highly sensitive to the rotation variances, translation and illumination in image identification. Thus, Histogram of Oriented Lines (HOL) has not obtained promising performance for palmprint recognition so far. In this paper, we propose a new descriptor of palmprint named Improved Histogram of Oriented Lines (IHOL), which is an alternative of HOL. Improved HOL is not very sensitive to changes of translation and illumination, and has the robustness against small transformations whereas the small translation and rotations make no change in histogram value adjustment of the proposed work. The experiment results show that based on IHOL, with Principal Component Analysis (PCA) subspace learning can achieve high recognition rates. The proposed method (IHOL-Cosine distance) improves 1.30% on PolyU I database, and similarly (IHOL-Euclidean distance) improves 2.36% on COEP database compared with existing HOL method.展开更多
The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as ill...The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as illumination changes and different viewing angles. For the Lab model that describes the global information of observations, a sorted nearest neighbor clustering method is proposed for color clustering and then a partitioned color matching method is used to calculate the color similarity between observations. The Bhattacharya distance is employed for the textural similarity calculation of the EHOG which describes the local information. The global information, which is robust to different viewing angles and scale changes, describes the observations well. Meanwhile, the use of local information, which is robust to illumination changes, can strengthen the discriminative ability of the method. The integration of global and local information improves the accuracy and robustness of the proposed matching approach. Experiments are carried out indoors, and the results show a high matching accuracy of the proposed method.展开更多
A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertic...A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertical symmetrical histograms of oriented gradients (VS-HOG) descriptor is proposed for extracting the image features. In the classification stage, an extreme learning machine (ELM) is used to improve the real-time performance. Experimental data demonstrate that, compared with other classical methods, the vehicle verification algorithm based on VS-HOG and ELM achieves a better trade-off between cost and performance. The computational cost is reduced by using the algorithm, while keeping the performance loss as low as possible. Furthermore, experimental results further show that the proposed vehicle verification method is suitable for on-road vehicle applications due to its better performance both in efficiency and accuracy.展开更多
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective....A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.展开更多
The Histograms of Oriented Gradients(HOG)can produce good results in an image target recognition mission,but it requires the same size of the target images for classification of inputs.In response to this shortcoming,...The Histograms of Oriented Gradients(HOG)can produce good results in an image target recognition mission,but it requires the same size of the target images for classification of inputs.In response to this shortcoming,this paper performs spatial pyramid segmentation on target images of any size,gets the pixel size of each image block dynamically,and further calculates and normalizes the gradient of the oriented feature of each block region in each image layer.The new feature is called the Histogram of Spatial Pyramid Oriented Gradients(HSPOG).This approach can obtain stable vectors for images of any size,and increase the target detection rate in the image recognition process significantly.Finally,the article verifies the algorithm using VOC2012 image data and compares the effect of HOG.展开更多
To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine...To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.展开更多
The Hand Gestures Recognition(HGR)System can be employed to facilitate communication between humans and computers instead of using special input and output devices.These devices may complicate communication with compu...The Hand Gestures Recognition(HGR)System can be employed to facilitate communication between humans and computers instead of using special input and output devices.These devices may complicate communication with computers especially for people with disabilities.Hand gestures can be defined as a natural human-to-human communication method,which also can be used in human-computer interaction.Many researchers developed various techniques and methods that aimed to understand and recognize specific hand gestures by employing one or two machine learning algorithms with a reasonable accuracy.Thiswork aims to develop a powerful hand gesture recognition model with a 100%recognition rate.We proposed an ensemble classification model that combines the most powerful machine learning classifiers to obtain diversity and improve accuracy.The majority voting method was used to aggregate accuracies produced by each classifier and get the final classification result.Our model was trained using a self-constructed dataset containing 1600 images of ten different hand gestures.The employing of canny’s edge detector and histogram of oriented gradient method was a great combination with the ensemble classifier and the recognition rate.The experimental results had shown the robustness of our proposed model.Logistic Regression and Support Vector Machine have achieved 100%accuracy.The developed model was validated using two public datasets,and the findings have proved that our model outperformed other compared studies.展开更多
Traffic flow statistics have become a particularly important part of intelligent transportation.To solve the problems of low real-time robustness and accuracy in traffic flow statistics.In the DeepSort tracking algori...Traffic flow statistics have become a particularly important part of intelligent transportation.To solve the problems of low real-time robustness and accuracy in traffic flow statistics.In the DeepSort tracking algorithm,the Kalman filter(KF),which is only suitable for linear problems,is replaced by the extended Kalman filter(EKF),which can effectively solve nonlinear problems and integrate the Histogram of Oriented Gradient(HOG)of the target.The multi-target tracking framework was constructed with YOLO V5 target detection algorithm.An efficient and longrunning Traffic Flow Statistical framework(TFSF)is established based on the tracking framework.Virtual lines are set up to record the movement direction of vehicles to more accurate and detailed statistics of traffic flow.In order to verify the robustness and accuracy of the traffic flow statistical framework,the traffic flow in different scenes of actual road conditions was collected for verification.The experimental validation shows that the accuracy of the traffic statistics framework reaches more than 93%,and the running speed under the detection data set in this paper is 32.7FPS,which can meet the real-time requirements and has a particular significance for the development of intelligent transportation.展开更多
This paper presents a human action recognition method. It analyzes the spatio-temporal grids along the dense trajectories and generates the histogram of oriented gradients (HOG) and histogram of optical flow (HOF)...This paper presents a human action recognition method. It analyzes the spatio-temporal grids along the dense trajectories and generates the histogram of oriented gradients (HOG) and histogram of optical flow (HOF) to describe the appearance and motion of the human object. Then, HOG combined with HOF is converted to bag-of-words (BoWs) by the vocabulary tree. Finally, it applies random forest to recognize the type of human action. In the experiments, KTH database and URADL database are tested for the performance evaluation. Comparing with the other approaches, we show that our approach has a better performance for the action videos with high inter-class and low inter-class variabilities.展开更多
Herein,a three-stage support vector machine(SVM)for facial expression recognition is proposed.The first stage comprises 21 SVMs,which are all the binary combinations of seven expressions.If one expression is dominant,...Herein,a three-stage support vector machine(SVM)for facial expression recognition is proposed.The first stage comprises 21 SVMs,which are all the binary combinations of seven expressions.If one expression is dominant,then the first stage will suffice;if two are dominant,then the second stage is used;and,if three are dominant,the third stage is used.These multilevel stages help reduce the possibility of experiencing an error as much as possible.Different image preprocessing stages are used to ensure that the features attained from the face detected have a meaningful and proper contribution to the classification stage.Facial expressions are created as a result of muscle movements on the face.These subtle movements are detected by the histogram-oriented gradient feature,because it is sensitive to the shapes of objects.The features attained are then used to train the three-stage SVM.Two different validation methods were used:the leave-one-out and K-fold tests.Experimental results on three databases(Japanese Female Facial Expression,Extended Cohn-Kanade Dataset,and Radboud Faces Database)show that the proposed system is competitive and has better performance compared with other works.展开更多
During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto lang...During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model.展开更多
This paper addresses the efficiency of two feature extraction methods for classifying small metal objects including screws,nuts,keys,and coins:the histogram of oriented gradients(HOG)and local binary pattern(LBP).The ...This paper addresses the efficiency of two feature extraction methods for classifying small metal objects including screws,nuts,keys,and coins:the histogram of oriented gradients(HOG)and local binary pattern(LBP).The desired features for the labeled images are first extracted and saved in the form of a feature matrix.Using three different classification methods(non-parametric K-nearest neighbors algorithm,support vector machine,and naïve Bayesian method),the images are classified into four different classes.Then,by examining the resulting confusion matrix,the performances of the HOG and LBP approaches are compared for these four classes.The effectiveness of these two methods is also compared with the“You Only Look Once”and faster region-based convolutional neural network approaches,which are based on deep learning.The collected image set in this paper includes 800 labeled training images and 180 test images.The results show that the use of the HOG is more efficient than the use of the LBP.Moreover,a combination of the HOG and LBP provides better results than either alone.展开更多
This paper presents a human detection system in a vision-based hospital surveillance environment. The system is composed of three subsystems, i.e. background segmentation subsystem (BSS), human feature extraction su...This paper presents a human detection system in a vision-based hospital surveillance environment. The system is composed of three subsystems, i.e. background segmentation subsystem (BSS), human feature extraction subsystem (HFES), and human recognition subsystem (HRS). The codebook background model is applied in the BSS, the histogram of oriented gradients (HOG) features are used in the HFES, and the support vector machine (SVM) classification is employed in the HRS. By means of the integration of these subsystems, the human detection in a vision-based hospital surveillance environment is performed. Experimental results show that the proposed system can effectively detect most of the people in hospital surveillance video sequences.展开更多
This study proposes a motion cue based pedestrian detection method with two-trame-filtering (Tff) for video surveillance. The novel motion cue is exploited by the gray value variation between two frames. Then Tff pr...This study proposes a motion cue based pedestrian detection method with two-trame-filtering (Tff) for video surveillance. The novel motion cue is exploited by the gray value variation between two frames. Then Tff processing filters the gradient magnitude image by the variation map. Summa- tions of the Tff gradient magnitudes in cells are applied to train a pre-deteetor to exclude most of the background regions. Histogram of Tff oriented gradient (HTffOG) feature is proposed for pedestrian detection. Experimental results show that this method is effective and suitable for real-time surveil- lance applications.展开更多
The histogram of oriented gradient has been successfully applied in many research fields with excellent performance especially in pedestrian detection. However, the method has rarely been applied to face recognition. ...The histogram of oriented gradient has been successfully applied in many research fields with excellent performance especially in pedestrian detection. However, the method has rarely been applied to face recognition. Aimed to develop a fast and efficient new feature for face recognition, the original HOG and its variations were applied to evaluate the effects of different factors. An information theory-based criterion was also developed to evaluate the potential classification power of different features. Comparative experiments show that even with a relatively simple feature descriptor, the proposed HOG feature achieves almost the same recognition rate with much lower computational time than the widely used Gabor feature on the FRGC and CAS-PEAL databases.展开更多
Since the outbreak of Coronavirus Disease 2019(COVID-19),people are recommended to wear facial masks to limit the spread of the virus.Under the circumstances,traditional face recognition technologies cannot achieve sa...Since the outbreak of Coronavirus Disease 2019(COVID-19),people are recommended to wear facial masks to limit the spread of the virus.Under the circumstances,traditional face recognition technologies cannot achieve satisfactory results.In this paper,we propose a face recognition algorithm that combines the traditional features and deep features of masked faces.For traditional features,we extract Local Binary Pattern(LBP),Scale-Invariant Feature Transform(SIFT)and Histogram of Oriented Gradient(HOG)features from the periocular region,and use the Support Vector Machines(SVM)classifier to perform personal identification.We also propose an improved Convolutional Neural Network(CNN)model Angular Visual Geometry Group Network(A-VGG)to learn deep features.Then we use the decision-level fusion to combine the four features.Comprehensive experiments were carried out on databases of real masked faces and simulated masked faces,including frontal and side faces taken at different angles.Images with motion blur were also tested to evaluate the robustness of the algorithm.Besides,the experiment of matching a masked face with the corresponding full face is accomplished.The experimental results show that the proposed algorithm has state-of-the-art performance in masked face recognition,and the periocular region has rich biological features and high discrimination.展开更多
This paper presents a particle filter-based visual tracking method with online feature selection mechanism. In color-based particle filter algorithm the weights of particles do not always represent the importance corr...This paper presents a particle filter-based visual tracking method with online feature selection mechanism. In color-based particle filter algorithm the weights of particles do not always represent the importance correctly, this may cause that the object tracking based on particle filter converge to a local region of the object. In our proposed visual tracking method, the Bhattacharyya distance and the local discrimination between the object and background are used to define the weights of the particles, which can solve the existing local convergence problem. Experiments demonstrates that the proposed method can work well not only in single object tracking processes but also in multiple similar objects tracking processes.展开更多
Traffic light detection and recognition is essential for autonomous driving in urban environments. A camera based algorithm for real-time robust traffic light detection and recognition was proposed, and especially des...Traffic light detection and recognition is essential for autonomous driving in urban environments. A camera based algorithm for real-time robust traffic light detection and recognition was proposed, and especially designed for autonomous vehicles. Although the current reliable traffic light recognition algorithms operate well under way, most of them are mainly designed for detection at a fixed position and the effect on autonomous vehicles under real-world conditions is still limited. Some methods achieve high accuracy on autonomous vehicle, but they can't work normally without the aid of high-precision priori map. The authors presented a camera-based algorithm for the problem. The image processing flow can be divided into three steps, including pre-processing, detection and recognition. Firstly, red-green-blue (RGB) color space is converted to hue-saturation-value (HSV) as main content of pre-processing. In detection step, the transcendental color threshold method is used for initial filterings, meanwhile, the prior knowledge is performed to scan the scene in order to quickly establish candidate regions. For recognition, this article use histogram of oriented gradients (HOG) features and support vector machine (SVM) as well to recognize the state of traffic light. The proposed system on our autonomous vehicle was evaluated. With voting schemes, the proposed can provide a sufficient accuracy for autonomous vehicles in urban enviroment.展开更多
This paper presents a novel formulation for detecting objects with articulated rigid bodies from highresolution monitoring images, particularly engineering vehicles. There are many pixels in high-resolution monitoring...This paper presents a novel formulation for detecting objects with articulated rigid bodies from highresolution monitoring images, particularly engineering vehicles. There are many pixels in high-resolution monitoring images, and most of them represent the background. Our method first detects ob ject patches from monitoring images using a coarse detection process. In this phase, we build a descriptor based on histograms of oriented gradient, which contain color frequency information. Then we use a linear support vector machine to rapidly detect many image patches that may contain ob ject parts, with a low false negative rate and a high false positive rate. In the second phase, we apply a refinement classification to determine the patches that actually contain ob jects. In this stage, we increase the size of the image patches so that they include the complete ob ject using models of the ob ject parts.Then an accelerated and improved salient mask is used to improve the performance of the dense scale-invariant feature transform descriptor. The detection process returns the absolute position of positive ob jects in the original images. We have applied our methods to three datasets to demonstrate their effectiveness.展开更多
文摘The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%.
文摘Automatic palmprint identification has received much attention in security applications and law enforcement. The performance of a palmprint identification system is improved by means of feature extraction and classification. Feature extraction methods such as Subspace learning are highly sensitive to the rotation variances, translation and illumination in image identification. Thus, Histogram of Oriented Lines (HOL) has not obtained promising performance for palmprint recognition so far. In this paper, we propose a new descriptor of palmprint named Improved Histogram of Oriented Lines (IHOL), which is an alternative of HOL. Improved HOL is not very sensitive to changes of translation and illumination, and has the robustness against small transformations whereas the small translation and rotations make no change in histogram value adjustment of the proposed work. The experiment results show that based on IHOL, with Principal Component Analysis (PCA) subspace learning can achieve high recognition rates. The proposed method (IHOL-Cosine distance) improves 1.30% on PolyU I database, and similarly (IHOL-Euclidean distance) improves 2.36% on COEP database compared with existing HOL method.
基金The National Natural Science Foundation of China(No.60972001)the Science and Technology Plan of Suzhou City(No.SG201076)
文摘The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as illumination changes and different viewing angles. For the Lab model that describes the global information of observations, a sorted nearest neighbor clustering method is proposed for color clustering and then a partitioned color matching method is used to calculate the color similarity between observations. The Bhattacharya distance is employed for the textural similarity calculation of the EHOG which describes the local information. The global information, which is robust to different viewing angles and scale changes, describes the observations well. Meanwhile, the use of local information, which is robust to illumination changes, can strengthen the discriminative ability of the method. The integration of global and local information improves the accuracy and robustness of the proposed matching approach. Experiments are carried out indoors, and the results show a high matching accuracy of the proposed method.
基金The National Natural Science Foundation of China(No.61203237)the Natural Science Foundation of Zhejiang Province(No.LQ12F03016)the China Postdoctoral Science Foundation(No.2011M500836)
文摘A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertical symmetrical histograms of oriented gradients (VS-HOG) descriptor is proposed for extracting the image features. In the classification stage, an extreme learning machine (ELM) is used to improve the real-time performance. Experimental data demonstrate that, compared with other classical methods, the vehicle verification algorithm based on VS-HOG and ELM achieves a better trade-off between cost and performance. The computational cost is reduced by using the algorithm, while keeping the performance loss as low as possible. Furthermore, experimental results further show that the proposed vehicle verification method is suitable for on-road vehicle applications due to its better performance both in efficiency and accuracy.
基金financially supported by the National High Technology Research and Development Program of China (863 Program, 2013AA102402)the 521 Talent Project of Zhejiang Sci-Tech University, Chinathe Key Research and Development Program of Zhejiang Province, China (2015C03023)
文摘A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.
基金partly supported by the National Natural Science Foundation of China(No.51802348)。
文摘The Histograms of Oriented Gradients(HOG)can produce good results in an image target recognition mission,but it requires the same size of the target images for classification of inputs.In response to this shortcoming,this paper performs spatial pyramid segmentation on target images of any size,gets the pixel size of each image block dynamically,and further calculates and normalizes the gradient of the oriented feature of each block region in each image layer.The new feature is called the Histogram of Spatial Pyramid Oriented Gradients(HSPOG).This approach can obtain stable vectors for images of any size,and increase the target detection rate in the image recognition process significantly.Finally,the article verifies the algorithm using VOC2012 image data and compares the effect of HOG.
基金National Natural Science Foundation of China(No.519705449)。
文摘To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.
文摘The Hand Gestures Recognition(HGR)System can be employed to facilitate communication between humans and computers instead of using special input and output devices.These devices may complicate communication with computers especially for people with disabilities.Hand gestures can be defined as a natural human-to-human communication method,which also can be used in human-computer interaction.Many researchers developed various techniques and methods that aimed to understand and recognize specific hand gestures by employing one or two machine learning algorithms with a reasonable accuracy.Thiswork aims to develop a powerful hand gesture recognition model with a 100%recognition rate.We proposed an ensemble classification model that combines the most powerful machine learning classifiers to obtain diversity and improve accuracy.The majority voting method was used to aggregate accuracies produced by each classifier and get the final classification result.Our model was trained using a self-constructed dataset containing 1600 images of ten different hand gestures.The employing of canny’s edge detector and histogram of oriented gradient method was a great combination with the ensemble classifier and the recognition rate.The experimental results had shown the robustness of our proposed model.Logistic Regression and Support Vector Machine have achieved 100%accuracy.The developed model was validated using two public datasets,and the findings have proved that our model outperformed other compared studies.
基金This work is supported by the Qingdao People’s Livelihood Science and Technology Plan(Grant 19-6-1-88-nsh).
文摘Traffic flow statistics have become a particularly important part of intelligent transportation.To solve the problems of low real-time robustness and accuracy in traffic flow statistics.In the DeepSort tracking algorithm,the Kalman filter(KF),which is only suitable for linear problems,is replaced by the extended Kalman filter(EKF),which can effectively solve nonlinear problems and integrate the Histogram of Oriented Gradient(HOG)of the target.The multi-target tracking framework was constructed with YOLO V5 target detection algorithm.An efficient and longrunning Traffic Flow Statistical framework(TFSF)is established based on the tracking framework.Virtual lines are set up to record the movement direction of vehicles to more accurate and detailed statistics of traffic flow.In order to verify the robustness and accuracy of the traffic flow statistical framework,the traffic flow in different scenes of actual road conditions was collected for verification.The experimental validation shows that the accuracy of the traffic statistics framework reaches more than 93%,and the running speed under the detection data set in this paper is 32.7FPS,which can meet the real-time requirements and has a particular significance for the development of intelligent transportation.
基金supported by the MOST,Taiwan under Grant No.102-2221-E-468-013
文摘This paper presents a human action recognition method. It analyzes the spatio-temporal grids along the dense trajectories and generates the histogram of oriented gradients (HOG) and histogram of optical flow (HOF) to describe the appearance and motion of the human object. Then, HOG combined with HOF is converted to bag-of-words (BoWs) by the vocabulary tree. Finally, it applies random forest to recognize the type of human action. In the experiments, KTH database and URADL database are tested for the performance evaluation. Comparing with the other approaches, we show that our approach has a better performance for the action videos with high inter-class and low inter-class variabilities.
文摘Herein,a three-stage support vector machine(SVM)for facial expression recognition is proposed.The first stage comprises 21 SVMs,which are all the binary combinations of seven expressions.If one expression is dominant,then the first stage will suffice;if two are dominant,then the second stage is used;and,if three are dominant,the third stage is used.These multilevel stages help reduce the possibility of experiencing an error as much as possible.Different image preprocessing stages are used to ensure that the features attained from the face detected have a meaningful and proper contribution to the classification stage.Facial expressions are created as a result of muscle movements on the face.These subtle movements are detected by the histogram-oriented gradient feature,because it is sensitive to the shapes of objects.The features attained are then used to train the three-stage SVM.Two different validation methods were used:the leave-one-out and K-fold tests.Experimental results on three databases(Japanese Female Facial Expression,Extended Cohn-Kanade Dataset,and Radboud Faces Database)show that the proposed system is competitive and has better performance compared with other works.
基金funded by Qatar University Internal Grant under Grant No.IRCC-2020-009.The ndings achieved herein are solely the responsibility of the authors。
文摘During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model.
文摘This paper addresses the efficiency of two feature extraction methods for classifying small metal objects including screws,nuts,keys,and coins:the histogram of oriented gradients(HOG)and local binary pattern(LBP).The desired features for the labeled images are first extracted and saved in the form of a feature matrix.Using three different classification methods(non-parametric K-nearest neighbors algorithm,support vector machine,and naïve Bayesian method),the images are classified into four different classes.Then,by examining the resulting confusion matrix,the performances of the HOG and LBP approaches are compared for these four classes.The effectiveness of these two methods is also compared with the“You Only Look Once”and faster region-based convolutional neural network approaches,which are based on deep learning.The collected image set in this paper includes 800 labeled training images and 180 test images.The results show that the use of the HOG is more efficient than the use of the LBP.Moreover,a combination of the HOG and LBP provides better results than either alone.
基金supported by the“MOST”under Grant No.103-2221-E-468-008-MY2
文摘This paper presents a human detection system in a vision-based hospital surveillance environment. The system is composed of three subsystems, i.e. background segmentation subsystem (BSS), human feature extraction subsystem (HFES), and human recognition subsystem (HRS). The codebook background model is applied in the BSS, the histogram of oriented gradients (HOG) features are used in the HFES, and the support vector machine (SVM) classification is employed in the HRS. By means of the integration of these subsystems, the human detection in a vision-based hospital surveillance environment is performed. Experimental results show that the proposed system can effectively detect most of the people in hospital surveillance video sequences.
基金Supported by the National High Technology Research and Development Program of China(No.2007AA01Z164)the National Natural Science Foundation of China(No.61273258)
文摘This study proposes a motion cue based pedestrian detection method with two-trame-filtering (Tff) for video surveillance. The novel motion cue is exploited by the gray value variation between two frames. Then Tff processing filters the gradient magnitude image by the variation map. Summa- tions of the Tff gradient magnitudes in cells are applied to train a pre-deteetor to exclude most of the background regions. Histogram of Tff oriented gradient (HTffOG) feature is proposed for pedestrian detection. Experimental results show that this method is effective and suitable for real-time surveil- lance applications.
基金Supported by the National Key Basic Research and Development(973) Program of China (No. 2007CB311004)the National High-Tech Research and Development (863) Program of China(No. 2006AA01Z115)
文摘The histogram of oriented gradient has been successfully applied in many research fields with excellent performance especially in pedestrian detection. However, the method has rarely been applied to face recognition. Aimed to develop a fast and efficient new feature for face recognition, the original HOG and its variations were applied to evaluate the effects of different factors. An information theory-based criterion was also developed to evaluate the potential classification power of different features. Comparative experiments show that even with a relatively simple feature descriptor, the proposed HOG feature achieves almost the same recognition rate with much lower computational time than the widely used Gabor feature on the FRGC and CAS-PEAL databases.
基金Supported by the Postgraduate Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics(XCXJH20220318)。
文摘Since the outbreak of Coronavirus Disease 2019(COVID-19),people are recommended to wear facial masks to limit the spread of the virus.Under the circumstances,traditional face recognition technologies cannot achieve satisfactory results.In this paper,we propose a face recognition algorithm that combines the traditional features and deep features of masked faces.For traditional features,we extract Local Binary Pattern(LBP),Scale-Invariant Feature Transform(SIFT)and Histogram of Oriented Gradient(HOG)features from the periocular region,and use the Support Vector Machines(SVM)classifier to perform personal identification.We also propose an improved Convolutional Neural Network(CNN)model Angular Visual Geometry Group Network(A-VGG)to learn deep features.Then we use the decision-level fusion to combine the four features.Comprehensive experiments were carried out on databases of real masked faces and simulated masked faces,including frontal and side faces taken at different angles.Images with motion blur were also tested to evaluate the robustness of the algorithm.Besides,the experiment of matching a masked face with the corresponding full face is accomplished.The experimental results show that the proposed algorithm has state-of-the-art performance in masked face recognition,and the periocular region has rich biological features and high discrimination.
基金supported by the Natural Science Foundation of China (Nos. 60736024, 61174053)the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 708069)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20100172110023)
文摘This paper presents a particle filter-based visual tracking method with online feature selection mechanism. In color-based particle filter algorithm the weights of particles do not always represent the importance correctly, this may cause that the object tracking based on particle filter converge to a local region of the object. In our proposed visual tracking method, the Bhattacharyya distance and the local discrimination between the object and background are used to define the weights of the particles, which can solve the existing local convergence problem. Experiments demonstrates that the proposed method can work well not only in single object tracking processes but also in multiple similar objects tracking processes.
基金supported by Natural Basic Research Program of China (91120306, 61203366)
文摘Traffic light detection and recognition is essential for autonomous driving in urban environments. A camera based algorithm for real-time robust traffic light detection and recognition was proposed, and especially designed for autonomous vehicles. Although the current reliable traffic light recognition algorithms operate well under way, most of them are mainly designed for detection at a fixed position and the effect on autonomous vehicles under real-world conditions is still limited. Some methods achieve high accuracy on autonomous vehicle, but they can't work normally without the aid of high-precision priori map. The authors presented a camera-based algorithm for the problem. The image processing flow can be divided into three steps, including pre-processing, detection and recognition. Firstly, red-green-blue (RGB) color space is converted to hue-saturation-value (HSV) as main content of pre-processing. In detection step, the transcendental color threshold method is used for initial filterings, meanwhile, the prior knowledge is performed to scan the scene in order to quickly establish candidate regions. For recognition, this article use histogram of oriented gradients (HOG) features and support vector machine (SVM) as well to recognize the state of traffic light. The proposed system on our autonomous vehicle was evaluated. With voting schemes, the proposed can provide a sufficient accuracy for autonomous vehicles in urban enviroment.
基金supported by the China Knowledge Centre for Engineering Sciences and Technology(No.CKCEST-2014-1-2)the Zhejiang Provincial Natural Science Foundation of China(No.LY14F020027)the National Natural Science Foundation of China(No.61272304)
文摘This paper presents a novel formulation for detecting objects with articulated rigid bodies from highresolution monitoring images, particularly engineering vehicles. There are many pixels in high-resolution monitoring images, and most of them represent the background. Our method first detects ob ject patches from monitoring images using a coarse detection process. In this phase, we build a descriptor based on histograms of oriented gradient, which contain color frequency information. Then we use a linear support vector machine to rapidly detect many image patches that may contain ob ject parts, with a low false negative rate and a high false positive rate. In the second phase, we apply a refinement classification to determine the patches that actually contain ob jects. In this stage, we increase the size of the image patches so that they include the complete ob ject using models of the ob ject parts.Then an accelerated and improved salient mask is used to improve the performance of the dense scale-invariant feature transform descriptor. The detection process returns the absolute position of positive ob jects in the original images. We have applied our methods to three datasets to demonstrate their effectiveness.