Currently,most of the methods formineral materials analysis generate secondary pollution,which is detrimental to human health.For instance,traditionalmethods for sphalerite analysis in the zinc(Zn)smelting industry in...Currently,most of the methods formineral materials analysis generate secondary pollution,which is detrimental to human health.For instance,traditionalmethods for sphalerite analysis in the zinc(Zn)smelting industry including chemical titration,atomic absorption spectrometry,and inductively coupled atomic emission spectroscopy.Colored indicators and toxic heavy metals are used in the analytical processes,causing severe pollution.For some methods,liquid is transformed into gaseous plasma,which is more dangerous to human health.Due to large quantities of sphalerite being used,secondary pollution cannot be ignored.This study proposes a green analysis method for the detection of sphalerite based on colorimetry,which does not generate secondary pollution.The results show that the strong substitution ability of iron(Fe)for Zn contributes to their inverse correlation in contents.The lattice parameters decrease with the increasing Fe content,resulting in a darker coloration.Here,key colorimetry parameters of L*,a*,and b*show clear linear correlations with the Zn and Fe contents.Compared with traditional approaches,this new method is environmental friendly with high sensitivity and accuracy.The relative error and relative standard deviation were less than 10%and 5%,respectively.This study provides a significant reference for nonpollution determination of other mineral materials.展开更多
To achieve radar and infrared stealth, an infrared stealth layer is usually added to the radar absorbing material(RAM) of stealth aircraft. By analyzing the millimeter-wave(MMW) emissivities of three stealth mater...To achieve radar and infrared stealth, an infrared stealth layer is usually added to the radar absorbing material(RAM) of stealth aircraft. By analyzing the millimeter-wave(MMW) emissivities of three stealth materials, this Letter investigates the impact of the added infrared stealth layer on the originally "hot" MMW emission of RAM. The theoretical and measured results indicate that, compared with the monolayer RAM, the MMW emission of the bilayer material is still strong and its emissivity is reduced by 0.1–0.2 at almost every incident angle.The results partially demonstrate the feasibility of detecting stealth aircraft coated with this bilayer stealth material.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:52174385,41877392Fundamental Research Funds for the Central Universities,Tongji University,Grant/Award Number:22120220166。
文摘Currently,most of the methods formineral materials analysis generate secondary pollution,which is detrimental to human health.For instance,traditionalmethods for sphalerite analysis in the zinc(Zn)smelting industry including chemical titration,atomic absorption spectrometry,and inductively coupled atomic emission spectroscopy.Colored indicators and toxic heavy metals are used in the analytical processes,causing severe pollution.For some methods,liquid is transformed into gaseous plasma,which is more dangerous to human health.Due to large quantities of sphalerite being used,secondary pollution cannot be ignored.This study proposes a green analysis method for the detection of sphalerite based on colorimetry,which does not generate secondary pollution.The results show that the strong substitution ability of iron(Fe)for Zn contributes to their inverse correlation in contents.The lattice parameters decrease with the increasing Fe content,resulting in a darker coloration.Here,key colorimetry parameters of L*,a*,and b*show clear linear correlations with the Zn and Fe contents.Compared with traditional approaches,this new method is environmental friendly with high sensitivity and accuracy.The relative error and relative standard deviation were less than 10%and 5%,respectively.This study provides a significant reference for nonpollution determination of other mineral materials.
基金supported partially by the Shanghai Spaceflight Technology Renovation Fund(No.SAST2015088)the Fundamental Research Fund for the Central Universities(No.HUST2015QN093)
文摘To achieve radar and infrared stealth, an infrared stealth layer is usually added to the radar absorbing material(RAM) of stealth aircraft. By analyzing the millimeter-wave(MMW) emissivities of three stealth materials, this Letter investigates the impact of the added infrared stealth layer on the originally "hot" MMW emission of RAM. The theoretical and measured results indicate that, compared with the monolayer RAM, the MMW emission of the bilayer material is still strong and its emissivity is reduced by 0.1–0.2 at almost every incident angle.The results partially demonstrate the feasibility of detecting stealth aircraft coated with this bilayer stealth material.