Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and proces...Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.展开更多
Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive ...Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geo- graphical origin discrimination.展开更多
文摘Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.
基金financial support from the National Natural Science Foundation of China(no.81373926)
文摘Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geo- graphical origin discrimination.