期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
NUMERICAL SIMULATION OF MESOSCALE STRUCTURES OF TYPHOON AND OROGRAPHIC EFFECTS USING MM5
1
作者 王鹏云 《Acta meteorologica Sinica》 SCIE 1999年第4期474-493,共20页
The track, landfall, dynamic and thermodynamic and cloud-rain physical mesoscale structures and their evolution of typhoon HERB 1996 in 36 h from 0000 UTC 31 July to 1200 UTC 1 August 1996 were simulated by using the ... The track, landfall, dynamic and thermodynamic and cloud-rain physical mesoscale structures and their evolution of typhoon HERB 1996 in 36 h from 0000 UTC 31 July to 1200 UTC 1 August 1996 were simulated by using the non-hydrostatic mesoscale model MM5. This period covered the process of typhoon HERB landfall at Taiwan and Fujian Provinces. Results show that the model successfully simulated the landfall process of typhoon HERB, revealed the most important characteristics of the mesoscale dynamic and thermodynamic and cloud-rain physical structure during its landfall. The simulated typhoon track was close to the observation. The center of cyclonic circulation simulated at 0000 UTC on 1 August 1996 (24 h integration) was located in shore near Fuqing, Fujian Province at which the typhoon was reported to landfall two hours later. It shows that strong upward motion formed by low level convergence existed in the eye-wall and subsidence at the eye. The wind field shows clear asymmetrical structure near the typhoon center. The cloud and rainband was screw-typed distributed around typhoon center, and consisted of meso-β scale rain cores. During the period of typhoon HERB staying near and passing over Taiwan, the lower cloud was developed in the eye region so that the previous clear typhoon eye on the satellite pictures became fuzzy. Observation shows that the typhoon center was 'warm', but the model simulations with higher space resolution show that in the mid-troposphere the region of eye-wall with stronger upward motion and more cloud-and rain- water was warmer than the eye. During the period of typhoon passing over Taiwan and its following landfall at Fujian, the track of model typhoon deviated about 30 km northward (i. e., rightward) because of the orographic effects of Taiwan Island, but the strength of the typhoon was not affected remarkably. The amount of rainfall on Taiwan in the 36 h simulations was enhanced more than six times by the orographic lifting of Taiwan Mountain. 展开更多
关键词 TYPHOON MESOSCALE cloud physical structure orographic effects MM5 (mesoscale model version 5)
原文传递
A Numerical Study on the Effects of Orography During the Landfall Process of Typhoon Haitang 被引量:1
2
作者 张建海 陈红梅 诸晓明 《Marine Science Bulletin》 CAS 2007年第1期3-12,共10页
The landfall process of typhoon Haitang which affected East China seriously was simulated by using the MM5 model and the track, intensity, precipitation and structure of typhoon were successfully reproduced. Then thro... The landfall process of typhoon Haitang which affected East China seriously was simulated by using the MM5 model and the track, intensity, precipitation and structure of typhoon were successfully reproduced. Then through the sensitive test, the effects of terrain were analyzed Results show that the irregular track during the period of typhoon passing through Taiwan and later landfalling at Fujian was in relation to the occurring and developing of orthographic impressed depression. The amount of rainfall was enhanced more than one time and the strength of typhoon was weakened 4 to 5 hPa. It is found that the effect of terrain on the structure of typhoon is limited at low level and is backward in space compared with the one at high level. In addition, the phenomenon that the equivalent temperature in the typhoon's moving direction inclines to the west on the eye of landfall may be concerned with the terrain. 展开更多
关键词 Typhoon Haitang orographic effects numerical experiments structural change
下载PDF
Spatio-temporal variability in sea surface wind stress near and off the east coast of Korea 被引量:1
3
作者 NAM SungHyun KIM Young Ho +1 位作者 PARK Kyung-Ae KIM Kuh 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第1期107-114,共8页
Sea surface wind stress variabilities near and off the east coast of Korea, are examined using 7 kinds of wind datasets from measurements at 2 coastal (land) stations and 2 ocean buoys,satellite scatterometer (QuikSCA... Sea surface wind stress variabilities near and off the east coast of Korea, are examined using 7 kinds of wind datasets from measurements at 2 coastal (land) stations and 2 ocean buoys,satellite scatterometer (QuikSCAT), and global reanalyzed products (ECMWF,NOGAPS,and NCEP/NCAR). Temporal variabilities are analyzed at 3 frequency bands; synoptic (2-20 d), intra-seasonal (20-90 d),and seasonal (>90 d).Synoptic and intra-seasonal variations are predominant near and off the Donghae City due to the passage of the mesoscale weather system. Seasonal variation is caused by southeastward wind stress during Asian winter monsoon. The sea surface wind stress from reanalyzed datasets.QuikSCAT and KMA-B measurements off the coast show good agreement in the magnitude and direction,which are strongly aligned with the alongshore direction.At the land-based sites,wind stresses are much weaker by factors of 3-10 due to the mountainous landmass on the east parts of Korea Peninsula.The first EOF modes(67%-70%) of wind stresses from reanalyzed and QuikSCAT data have similar structures of the strong southeastward wind stress in winter along the coast but show different curl structures at scales less than 200 km due to the orographic effects.The second EOF modes (23%-25%) show southwestward wind stress in every September along the east coast of the North Korea 展开更多
关键词 sea surface wind stress spatio-temporal variability MONSOON SEASONAL intra-seasonal synoptic band orographic effect
下载PDF
Dynamics of local extreme rainfall of super Typhoon Soudelor (2015) in East China 被引量:2
4
作者 Jinsong PAN Daigao TENG +4 位作者 Fuqing ZHANG Lingli ZHOU Ling LUO Yonghui WENG Yunji ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第5期572-594,共23页
The characteristics and dynamics associated with the distribution, intensity, and triggering factors of local severe precipitation in Zhejiang Province induced by Super Typhoon Soudelor(2015) were investigated using m... The characteristics and dynamics associated with the distribution, intensity, and triggering factors of local severe precipitation in Zhejiang Province induced by Super Typhoon Soudelor(2015) were investigated using mesoscale surface observations, radar reflectivity, satellite nephograms, and the final(FNL) analyses of the Global Forecasting System(GFS) of the National Center for Environmental Prediction(NCEP). The rainfall processes during Soudelor's landfall and translation over East China could be separated into four stages based on rainfall characteristics such as distribution, intensity, and corresponding dynamics. The relatively less precipitation in the first stage resulted from interaction between the easterly wind to the north flank of this tropical cyclone(TC) and the coastal topography along the southeast of Zhejiang Province, China. With landfall of the TC in East China during the second stage, precipitation maxima occurred because of interaction between the TC's principal rainbands and the local topography from northeastern Fujian Province to southwestern Zhejiang Province. The distribution of precipitation presented significant asymmetric features in the third stage with maximal rainfall bands in the northeast quadrant of the TC when Soudelor's track turned from westward to northward as the TC decayed rapidly. Finally, during the northward to northeastward translation of the TC in the fourth stage, the interaction between a mid-latitude weather system and the northern part of the TC resulted in transfer of the maximum rainfall from the north of Zhejiang Province to the north of Jiangsu Province,which represented the end of rainfall in Zhejiang Province. Further quantitative calculations of the rainfall rate induced by the interaction between local topography and TC circulation(defined as "orographic effects") in the context of a one-dimensional simplified model showed that orographic effects were the primary factor determining the intensity of precipitation in this case,and accounted for over 50% of the total precipitation. The asymmetric distribution of the TC's rainbands was closely related to the asymmetric distribution of moisture resulted from changes of the TC's structure, and led to asymmetric distribution of local intense precipitation induced by Soudelor. Based on analysis of this TC, it could be concluded that local severe rainfall in the coastal regions of East China is closely related to changes of TC structure and intensity, as well as the outer rainbands. In addition, precipitation intensity and duration will increase correspondingly because of the complex interactions between the TC and local topography, and the particular TC track along large-scale steering flow. The results of this study may be useful for the understanding, prediction, and warning of disasters induced by local extreme rainfall caused by TCs, especially for facilitating forecasting and warning of flooding and mudslides associated with torrential rain caused by interactions between landfalling TCs and coastal topography. 展开更多
关键词 TC outer circulation TC principal rainband orographic effect Expanding of TC's spiral bands
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部