期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A Model for Predicting Dynamic Cutting Forces in Sand Mould Milling with Orthogonal Cutting 被引量:2
1
作者 Zhong-De Shan Fu-Xian Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期95-105,共11页
Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete depositio... Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete deposition material. There is still a lack of theoretical research on the cutting force. In order to realize the prediction and control of the cut?ting force in the sand mould milling process, an analytical model of cutting force is proposed based on the unequal division shear zone model of orthogonal cutting. The deformation velocity relations of the chip within the orthogonal cutting shear zone are analyzed first. According to the flow behavior of granular, the unequal division shear zone model of sand mould is presented, in which the governing equations of shear strain rate, strain and velocity are estab?lished. The constitutive relationship of quasi?solid–liquid transition is introduced to build the 2D constitutive equation and deduce the cutting stress in the mould shear zone. According to the cutting geometric relations of up milling with straight cutting edge and the transformation relationship between cutting stress and cutting force, the dynamic cutting forces are predicted for di erent milling conditions. Compared with the experimental results, the predicted results show good agreement, indicating that the predictive model of cutting force in milling sand mould is validated. Therefore, the proposed model can provide the theoretical guidance for cutting force control in high e ciency mill?ing sand mould. 展开更多
关键词 Green manufacture cutting force Sand mould milling orthogonal cutting Quasi?solid–liquid transition
下载PDF
Temperature distribution in the tool-chip-workpiece system during the orthogonal cutting process
2
作者 ZHENG Chun GU Tong (Department of Mechanical Engineering, McMaster University, Canada) (Applied Science School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第3期30-34,共5页
The temperature distribution in the tool, chip and workpiece was studied during the orthogonal cuttingprocess Under several different cutting conditions. The temperature distribution is calculated by the finite differ... The temperature distribution in the tool, chip and workpiece was studied during the orthogonal cuttingprocess Under several different cutting conditions. The temperature distribution is calculated by the finite differencemethod. and the variation of the material properties with temperature was taken was taken into account The results obtained arecoincident with both previous published results and experimental measurements. 展开更多
关键词 temperature distribution orthogonal cutting FDM tool-chip-workpiece system
下载PDF
A cortical bone milling force model based on orthogonal cutting distribution method 被引量:6
3
作者 Qi-Sen Chen Li Dai +1 位作者 Yu Liu Qiu-Xiang Shi 《Advances in Manufacturing》 SCIE CAS CSCD 2020年第2期204-215,共12页
In orthopedic surgery,the bone milling force has attracted attention owing to its significant influence on bone cracks and the breaking of tools.It is necessary to build a milling force model to improve the process of... In orthopedic surgery,the bone milling force has attracted attention owing to its significant influence on bone cracks and the breaking of tools.It is necessary to build a milling force model to improve the process of bone milling.This paper proposes a cortical bone milling force model based on the orthogonal cutting distribution method(OCDM),explaining the effect of anisotropic bone materials on milling force.According to the model,the bone milling force could be represented by the equivalent effect of a transient cutting force in a rotating period,and the transient milling force could be calculated by the transient milling force coefficients,cutting thickness,and cutting width.Based on the OCDM,the change in transient cutting force coefficients during slotting can be described by using a quadratic polynomial.Subsequently,the force model is updated for robotic bone milling,considering the low stiffness of the robot arm.Next,an experimental platform for robotic bone milling is built to simulate the milling process in clinical operation,and the machining signal is employed to calculate the milling force.Finally,according to the experimental result,the rationality of the force model is verified by the contrast between the measured and predicted forces.The milling force model can satisfy the accuracy requirement for predicting the milling force in the different processing directions,and it could promote the development of force control in orthopedic surgery. 展开更多
关键词 Robotic milling force Cortical bone cutting force coefficient orthogonal cutting distribution
原文传递
Adiabatic Shear Bands in 30CrNi_3MoV Structural Steel Induced during High Speed Cutting 被引量:3
4
作者 Chunzheng DUAN and Minjie WANGKey Laboratory of Ministry of Education for Precision and Non-traditional Machining, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期775-778,共4页
The width and spacing of adiabatic shear bands (ASBs) in the serrated chips generated during high speed orthogonal cutting of 30CrNi3MoV structurai steel were measured by opticai microscopy (OM), the temperature rise ... The width and spacing of adiabatic shear bands (ASBs) in the serrated chips generated during high speed orthogonal cutting of 30CrNi3MoV structurai steel were measured by opticai microscopy (OM), the temperature rise in the shear band was estimated. The microstructures of the ASBs were also characterized by SEM and TEM. The results show that the width and spacing of ASBs decrease with the increase of the cutting speed. The further observations show that the microstructure between the matrix and the center of the ASB gradually changes, and that the martensitic phase transformation, carbide precipitation and recrystallization may occur in the ASB. 展开更多
关键词 Adiabatic shear band (ASB) RECRYSTALLIZATION orthogonal cutting
下载PDF
Cutting Behavior of Cortical Bone in Different Bone Osteon Cutting Angles and Depths of Cut
5
作者 Yuanqiang Luo Yinghui Ren +3 位作者 Yang Shu Cong Mao Zhixiong Zhou Z.M.Bi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期80-91,共12页
Cortical bone is semi-brittle and anisotropic,that brings a challenge to suppress vibration and avoid undesired fracture in precise cutting process in surgeries.In this paper,a novel analytical model is proposed to re... Cortical bone is semi-brittle and anisotropic,that brings a challenge to suppress vibration and avoid undesired fracture in precise cutting process in surgeries.In this paper,a novel analytical model is proposed to represent cortical bone cutting processes.The model is utilized to predict the chip formations,material removal behavior and cracks propagation under varying bone osteon cutting angles and depths.Series of orthogonal cutting experiments were conducted on cortical bone to investigate the impact of bone osteon cutting angle and depth of cut on cutting force,crack initialization and propagation.The observed chip morphology highly agreed with the prediction of chip formation based on the analytical model.The curly,serrated,grainy and powdery chips formed when the cutting angle was set as 0°,60°,90°,and 120°,respectively.Cortical bone were removed dominantly by shearing at a small depth of cut from 10 to 50μm,and by a mixture of pealing,shearing,fracture and crushing at a large depth of cut over 100μm at different bone osteon angles.Moreover,its fracture toughness was calculated based on measured cutting force.It is found that the fluctuation of cutting force is suppressed and the bone material becomes easy to remove,which attributes to lower fracture toughness at bone osteon cutting angle 0°.When the cutting direction develops a certain angle to bone osteon,the fracture toughness increases then the crack propagation is inhibited to some extent and the fluctuation of cutting force comparatively decreases.There is a theoretical and practical significance for tools design and operational parameters choice in surgeries. 展开更多
关键词 Bone cutting surgery orthogonal cutting models Anisotropic materials Chip formation Crack initialization and propagation Fracture toughness
下载PDF
Study of material removal behavior on R-plane of sapphire during ultra-precision machining based on modified slip-fracture model 被引量:2
6
作者 Suk Bum Kwon Aditya Nagaraj +1 位作者 Hae-Sung Yoon Sangkee Min 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2020年第3期141-155,共15页
In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting dir... In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting direction of resultant force. Anisotropic characteristics of crack morphology and ductility of machining depending on cutting direction were explained in detail with modified fracture cleavage and plastic deformation parameters. Through the analysis, it was concluded that crack morphologies were mainly determined by the interaction of multiple fracture systems activated while, critical depth of cut was determined by the dominant plastic deformation parameter. In addition to this, by using proportionality relationship between magnitude of resultant force and depth of cut in the ductile region, an empirical model for critical depth of cut was developed. 展开更多
关键词 Ductile-brittle transition Crack morphology Single crystal sapphire Deformation mechanism orthogonal cutting Ultra-precision machining
下载PDF
Finite Element Investigation of the Influence of SiC Particle Distribution on Diamond Cutting of SiCp/AI Composites 被引量:3
7
作者 Shijin Lu Zengqiang Li +4 位作者 Junjie Zhang Jianguo Zhang Xiaohui Wang Yongda Yan Tao Sun 《Nanomanufacturing and Metrology》 2020年第4期251-259,共9页
Characteristics of internal microstructures have a strong impact on the properties of particulate reinforced metal composites.In the present work,we perform finite element simulations to elucidate fundamental mechanis... Characteristics of internal microstructures have a strong impact on the properties of particulate reinforced metal composites.In the present work,we perform finite element simulations to elucidate fundamental mechanisms involved in the ultraprecision orthogonal cutting of aluminum-based silicon carbide composites(SiCp/AI),with an emphasis on the influence of particle distribution characteristic.The SiCp/AI composite with a particle volume fraction of 25 vol%and a mean particle size of 10|im consists of randomly distributed polygon-shaped SiC particles,the elastic deformation and brittle failure of which are described by the brittle cracking model.Simulation results reveal that in addition to metal matrix tearing,cuttinginduced particle deformation in terms of dislodging,debonding,and cracking plays an important role in the microscopic deformation and correlated machining force variation and machined surface integrity.It is found that the standard deviation of particle size to the mean value has a strong influence on the machinability of microscopic particle-tool edge interactions and macroscopically observed machining results.The present work provides a guideline for the rational synthesis of particulate-reinforced metal composites with high machinability. 展开更多
关键词 SiCp/AI composites orthogonal cutting Particle-tool interaction Particle distribution FE simulation
原文传递
Finite element modeling of chip separation in machining cellular metals
8
作者 R.Guerra Silva U.Teicher +1 位作者 A.Nestler A.Brosius 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第1期54-62,共9页
Cellular metals and metal foams belong to a young material group. Although it is desired to manufac- ture near-net-shape parts of cellular metals by primary shaping processes, additional secondary machining opera- tio... Cellular metals and metal foams belong to a young material group. Although it is desired to manufac- ture near-net-shape parts of cellular metals by primary shaping processes, additional secondary machining opera- tions are often unavoidable to obtain the required geome- tries and quality demands. Nevertheless, conventional machining of cellular metals leads to undesirable surface damage and poor precision. Furthermore, the chip forma- tion and the mechanism description of the surface damage are still unclear. A mesoscopic finite element model was developed to simulate the chip formation process in machining cellular metals. Experimental data of orthogonal machining tests were used to validate the finite element model. The cutting and thrust forces, as well as the images of the chip formation process of both experiments and simulations were compared and analysed. The model enabled the analysis of the chip formation and the surface defect mechanisms. The rake angle and cutting conditions affected the chip formation process, but the cell arrange- ment was detected as a decisive factor in the chip forma- tion and the resulting surface damage. 展开更多
关键词 Cellular metals. Metal foams - MachiningFinite element modeling - orthogonal cutting
原文传递
A novel method for AFRPs burrs removal:Principle of mechanochemo-induced fiber fracture
9
作者 Jie XU Bo LI +2 位作者 Pingfa FENG Qiang WANG Feng FENG 《Chinese Journal of Aeronautics》 SCIE EI CAS 2024年第7期522-538,共17页
Burrs generated during the machining of Aramid-Fiber-Reinforced Composites(AFRPs)pose a challenge for the production efficiency of aircraft and helicopter housing parts.Existing studies have generally attempted to sup... Burrs generated during the machining of Aramid-Fiber-Reinforced Composites(AFRPs)pose a challenge for the production efficiency of aircraft and helicopter housing parts.Existing studies have generally attempted to suppress burrs by referring to delamination suppression methods.In contrast to stratification,burrs are remediable machining defects.As such,a mechanochemical method with burrs trimming technological strategy are implemented to effectively combat burrs.Herein,we clarify the mechanism by which aramid fibers cannot be cut off using analytical and numerical models.In addition,the mechanism of fiber fracture with Modified Polyurethane Reactive Polymer(M-PUR),and development of anti-burr devices(thermostatic adhesive sealed generator)are discussed.Finally,the experimental results show that the reduction rate in burr length is 87%-91%through the mechanochemical method.The method not only opens a new avenue to solve the burr problem of aramid fibers but also builds an interdisciplinary bridge between polymer science and composite machining. 展开更多
关键词 Mechanochemical method Burrs orthogonal cutting Aramid fiber-reinforced composites Milling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部