本文研究了智能反射面(IRS)辅助OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址接入)云无线接入网(C-RAN)的下行链路传输系统,其中基带处理单元(BBU)池通过多个远端射频头(RRH)与多个用户进行通信.RRH到用户的接入...本文研究了智能反射面(IRS)辅助OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址接入)云无线接入网(C-RAN)的下行链路传输系统,其中基带处理单元(BBU)池通过多个远端射频头(RRH)与多个用户进行通信.RRH到用户的接入链路采用OFDMA接入技术.对于BBU池到RRH,采用无线前传链路,并且部署多个IRS以增强链路传输能力.在BBU池和每个RRH发射功率约束下,本文提出通过联合优化前传链路和接入链路资源配置使下行用户和速率最大化.由于该资源配置问题是非凸的,首先采用连续凸逼近(SCA)对目标以及约束条件进行转换.其次,将转换后的问题拆分成三个子问题来交替性求解.最后,计算机仿真结果显示了所提出的联合资源分配方法与其他基准方案相比具有显著的传输性能增益.展开更多
To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal...To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.展开更多
Distributed radio access network (DRAN) is a novel wireless access architecture and can solve the problem of the available spectrum scarcity in wireless communications. In this paper, we investigate resource allocatio...Distributed radio access network (DRAN) is a novel wireless access architecture and can solve the problem of the available spectrum scarcity in wireless communications. In this paper, we investigate resource allocation for the downlink of OFDMA DRAN. Unlike previous exclusive criterion based algorithms that allocate each subcarrier to only one user in the system, the proposed algorithms are based on shared criterion that allow each subcarrier to be allocated to multiple users through different antennas and to only one user through same antenna. First, an adaptive resource allocation algorithm based on shared criterion is proposed to maximize total system rate under each user's minimal rate and each antenna's maximal power constraints. Then we improve the above algorithm by considering the influence of the resource allocation scheme on single user. The simulation results show that the shared criterion based algorithm provide much higher total system rate than that of the exclusive criterion based algorithm at the expense of the outage performance and the fairness, while the improved algorithm based on shared criterion can achieve a good tradeoff performance.展开更多
Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate lo...Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate local oscillator and every transmitter to receiver link has individual carrier frequency offset (CFO) and channel impulse response (CIR) parameters. In order to reduce the computational complexity for MD optimization, a time domain CFOs and CIRs estimation algorithm over the OFDMA based wireless multimedia sensor networks (WMSN) is proposed in this paper. In this algorithm, the receiver station can decouple the signal from every node by correlation based on specially designed training sequences, so that the MD optimization problem is simplified to an 1-D optimal problem. It is proved that the multiple CFOs can be identified from the correlation result using the phase shift of the consecutive training se- quences. Based on the CFOs estimation result, the CIRs can then he estimated according to the minimum mean square error (MMSE) criterion. The theoretic analysis and simulation results show that the proposed algorithm can effectively decouple the signal from different user nodes and the bit error rate (BER) per- formance curves are close to the ideal estimation when the user number is not large.展开更多
在传统的无线多播传输中,多播组的系统性能受限于多播组内的最差用户的信道质量。为了克服多播组的系统性能受限的问题,将协作传输引入到基于正交频分多址(orthogonal frequency division multiple access,OFDMA)的无线多播网络中,并提...在传统的无线多播传输中,多播组的系统性能受限于多播组内的最差用户的信道质量。为了克服多播组的系统性能受限的问题,将协作传输引入到基于正交频分多址(orthogonal frequency division multiple access,OFDMA)的无线多播网络中,并提出了在总传输速率受限的情况下,最小化总传输功率的动态资源分配算法。为了减少计算复杂度和保障公平性,提出了协作公平子载波分配算法(cooperative fair,CF)和迭代注水功率分配算法。仿真结果显示,在多播组的用户中进行协作传输的系统性能,要远高于采用传统多播直接传输的性能,并且所提算法也在保证系统性能的同时,实现了多播组间良好的公平性。展开更多
文摘本文研究了智能反射面(IRS)辅助OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址接入)云无线接入网(C-RAN)的下行链路传输系统,其中基带处理单元(BBU)池通过多个远端射频头(RRH)与多个用户进行通信.RRH到用户的接入链路采用OFDMA接入技术.对于BBU池到RRH,采用无线前传链路,并且部署多个IRS以增强链路传输能力.在BBU池和每个RRH发射功率约束下,本文提出通过联合优化前传链路和接入链路资源配置使下行用户和速率最大化.由于该资源配置问题是非凸的,首先采用连续凸逼近(SCA)对目标以及约束条件进行转换.其次,将转换后的问题拆分成三个子问题来交替性求解.最后,计算机仿真结果显示了所提出的联合资源分配方法与其他基准方案相比具有显著的传输性能增益.
基金funded in part by the National Natural Science Foundation of China under Grant 61663024in part by the Hongliu First Class Discipline Development Project of Lanzhou University of Technology(25-225305).
文摘To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.
文摘Distributed radio access network (DRAN) is a novel wireless access architecture and can solve the problem of the available spectrum scarcity in wireless communications. In this paper, we investigate resource allocation for the downlink of OFDMA DRAN. Unlike previous exclusive criterion based algorithms that allocate each subcarrier to only one user in the system, the proposed algorithms are based on shared criterion that allow each subcarrier to be allocated to multiple users through different antennas and to only one user through same antenna. First, an adaptive resource allocation algorithm based on shared criterion is proposed to maximize total system rate under each user's minimal rate and each antenna's maximal power constraints. Then we improve the above algorithm by considering the influence of the resource allocation scheme on single user. The simulation results show that the shared criterion based algorithm provide much higher total system rate than that of the exclusive criterion based algorithm at the expense of the outage performance and the fairness, while the improved algorithm based on shared criterion can achieve a good tradeoff performance.
基金supported by the National High Technology Research and Development Programme of China(No.2006AA01Z216)
文摘Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate local oscillator and every transmitter to receiver link has individual carrier frequency offset (CFO) and channel impulse response (CIR) parameters. In order to reduce the computational complexity for MD optimization, a time domain CFOs and CIRs estimation algorithm over the OFDMA based wireless multimedia sensor networks (WMSN) is proposed in this paper. In this algorithm, the receiver station can decouple the signal from every node by correlation based on specially designed training sequences, so that the MD optimization problem is simplified to an 1-D optimal problem. It is proved that the multiple CFOs can be identified from the correlation result using the phase shift of the consecutive training se- quences. Based on the CFOs estimation result, the CIRs can then he estimated according to the minimum mean square error (MMSE) criterion. The theoretic analysis and simulation results show that the proposed algorithm can effectively decouple the signal from different user nodes and the bit error rate (BER) per- formance curves are close to the ideal estimation when the user number is not large.