Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In thi...Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In this paper, based on combination of modified maximum margin criterion and ILTSA, a novel feature extraction method named orthogonal discriminant improved local tangent space alignment (ODILTSA) is proposed. ODILTSA can preserve local geometry structure and maximize the margin between different classes simultaneously. Based on ODILTSA, a novel face recognition method which combines augmented complex wavelet features and original image features is developed. Experimental results on Yale, AR and PIE face databases demonstrate the effectiveness of ODILTSA and the feature fusion method.展开更多
基金the National Natural Science Foundation of China(No.61004088)the Key Basic Research Foundation of Shanghai Municipal Science and Technology Commission(No.09JC1408000)
文摘Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In this paper, based on combination of modified maximum margin criterion and ILTSA, a novel feature extraction method named orthogonal discriminant improved local tangent space alignment (ODILTSA) is proposed. ODILTSA can preserve local geometry structure and maximize the margin between different classes simultaneously. Based on ODILTSA, a novel face recognition method which combines augmented complex wavelet features and original image features is developed. Experimental results on Yale, AR and PIE face databases demonstrate the effectiveness of ODILTSA and the feature fusion method.