Compressive sensing theory mainly includes the sparsely of signal processing,the structure of the measurement matrix and reconstruction algorithm.Reconstruction algorithm is the core content of CS theory,that is,throu...Compressive sensing theory mainly includes the sparsely of signal processing,the structure of the measurement matrix and reconstruction algorithm.Reconstruction algorithm is the core content of CS theory,that is,through the low dimensional sparse signal recovers the original signal accurately.This thesis based on the theory of CS to study further on seismic data reconstruction algorithm.We select orthogonal matching pursuit algorithm as a base reconstruction algorithm.Then do the specific research for the implementation principle,the structure of the algorithm of AOMP and make the signal simulation at the same time.In view of the OMP algorithm reconstruction speed is slow and the problems need to be a given number of iterations,which developed an improved scheme.We combine the optimized OMP algorithm of constraint the optimal matching of item selection strategy,the backwards gradient projection ideas of adaptive variance step gradient projection method and the original algorithm to improve it.Simulation experiments show that improved OMP algorithm is superior to traditional OMP algorithm of improvement in the reconstruction time and effect under the same condition.This paper introduces CS and most mature compressive sensing algorithm at present orthogonal matching pursuit algorithm.Through the program design realize basic orthogonal matching pursuit algorithms,and design realize basic orthogonal matching pursuit algorithm of one-dimensional,two-dimensional signal processing simulation.展开更多
The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realis...The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realistic solutions.The empirical orthonormal function(EOF)is capable of a very large compression of the data set.In this paper,the non-linear response of the sound pressure to SSP is linearized using a first order Taylor expansion,and the pressure is expanded in a sparse domain using EOFs.Since the parameters of the inverse model are sparse,compressive sensing(CS)can help solve such underdetermined problems accurately,efficiently,and with enhanced resolution.Here,the orthogonal matching pursuit(OMP)is used to estimate range-independent acoustic SSPs using the simulated acoustic field.The superior resolution of OMP is demonstrated with the SSP data from the South China Sea experiment.By shortening the duration of the training set,the temporal correlation between EOF and test sets is enhanced,and the accuracy of sound velocity inversion is improved.The SSP estimation error versus depth is calculated,and the 99%confidence interval of error is within±0.6 m/s.The 82%of mean absolute error(MAE)is less than 1 m/s.It is shown that SSPs can be well estimated using OMP.展开更多
The performance guarantees of generalized orthogonal matching pursuit( gOMP) are considered in the framework of mutual coherence. The gOMP algorithmis an extension of the well-known OMP greed algorithmfor compressed...The performance guarantees of generalized orthogonal matching pursuit( gOMP) are considered in the framework of mutual coherence. The gOMP algorithmis an extension of the well-known OMP greed algorithmfor compressed sensing. It identifies multiple N indices per iteration to reconstruct sparse signals.The gOMP with N≥2 can perfectly reconstruct any K-sparse signals frommeasurement y = Φx if K 〈1/N(1/μ-1) +1,where μ is coherence parameter of measurement matrix Φ. Furthermore,the performance of the gOMP in the case of y = Φx + e with bounded noise ‖e‖2≤ε is analyzed and the sufficient condition ensuring identification of correct indices of sparse signals via the gOMP is derived,i. e.,K 〈1/N(1/μ-1)+1-(2ε/Nμxmin) ,where x min denotes the minimummagnitude of the nonzero elements of x. Similarly,the sufficient condition in the case of G aussian noise is also given.展开更多
In an underdetermined system,compressive sensing can be used to recover the support vector.Greedy algorithms will recover the support vector indices in an iterative manner.Generalized Orthogonal Matching Pursuit(GOMP)...In an underdetermined system,compressive sensing can be used to recover the support vector.Greedy algorithms will recover the support vector indices in an iterative manner.Generalized Orthogonal Matching Pursuit(GOMP)is the generalized form of the Orthogonal Matching Pursuit(OMP)algorithm where a number of indices selected per iteration will be greater than or equal to 1.To recover the support vector of unknown signal‘x’from the compressed measurements,the restricted isometric property should be satisfied as a sufficient condition.Finding the restricted isometric constant is a non-deterministic polynomial-time hardness problem due to that the coherence of the sensing matrix can be used to derive the sufficient condition for support recovery.In this paper a sufficient condition based on the coherence parameter to recover the support vector indices of an unknown sparse signal‘x’using GOMP has been derived.The derived sufficient condition will recover support vectors of P-sparse signal within‘P’iterations.The recovery guarantee for GOMP is less restrictive,and applies to OMP when the number of selection elements equals one.Simulation shows the superior performance of the GOMP algorithm compared with other greedy algorithms.展开更多
针对工业环境中随机冲击干扰下滚动轴承微弱故障特征提取难题,提出一种基于自适应短时维纳滤波(Adaptive Short Time Wiener Filtering,ASTWF)和改进正交匹配追踪(Orthogonal Matching Pursuit,OMP)的滚动轴承故障特征提取方法。该方法...针对工业环境中随机冲击干扰下滚动轴承微弱故障特征提取难题,提出一种基于自适应短时维纳滤波(Adaptive Short Time Wiener Filtering,ASTWF)和改进正交匹配追踪(Orthogonal Matching Pursuit,OMP)的滚动轴承故障特征提取方法。该方法首先采用包络峭度和随余比(Random Shocks and Margin Ratio,RMR)作为联合判据,界定窗长界限并自适应确定STWF最优窗长参数,进而将随机冲击干扰从测试信号中分离出来;然后,利用立方包络自相关谱估计信号中周期频率,构造周期原子库,降低匹配原子冗余度;最后,利用相似性理论优化匹配追踪迭代终止条件,并结合周期原子库,实现弱故障冲击特征快速、准确提取。根据仿真信号和通过变速箱下线检测所得工程数据,可验证所提出方法可有效识别随机冲击干扰下的滚动轴承微弱故障特征。对比最小熵形态反卷积(Minimum Entropy Morphological Deconvolution,MEMD)方法对于随机冲击干扰下滚动轴承微弱故障特征提取效果,发现所提出方法具有更好的故障特征提取能力;与经典OMP方法相比,所提出改进OMP方法信号重构速度提升66%。展开更多
This paper aims to investigate sufficient conditions for the recovery of sparse signals via the orthogonal matching pursuit (OMP) algorithm. In the noiseless case, we present a novel sufficient condition for the exa...This paper aims to investigate sufficient conditions for the recovery of sparse signals via the orthogonal matching pursuit (OMP) algorithm. In the noiseless case, we present a novel sufficient condition for the exact recovery of all k-sparse signals by the OMP algorithm, and demonstrate that this condition is sharp. In the noisy case, a sufficient condition for recovering the support of k-sparse signal is also presented. Generally, the computation for the restricted isometry constant (RIC) in these sufficient conditions is typically difficult, therefore we provide a new condition which is not only computable but also sufficient for the exact recovery of all k-sparse signals.展开更多
Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the O...Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the OMP algorithm under the restricted isometry property (RIP) is presented. It is shown that 5K+V/KOK,1 〈 1 is sufficient for the OMP algorithm to recover exactly the support of arbitrary /(-sparse signal if its nonzero components are large enough for both 12 bounded and lz~ bounded noises.展开更多
Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance...Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance of OMMP under the restricted isometry property(RIP)is presented.We demonstrate that OMMP can exactly recover any K-sparse signal from fewer observations y=φx,provided that the sampling matrixφsatisfiesδKN-N+1+√K/NθKN-N+1,N〈1.Moreover,the performance of OMMP for support recovery from noisy observations is also discussed.It is shown that,for l_2 bounded and l_∞bounded noisy cases,OMMP can recover the true support of any K-sparse signal under conditions on the restricted isometry property of the sampling matrixφand the minimum magnitude of the nonzero components of the signal.展开更多
Orthogonal matching pursuit(OMP)algorithm is a classical greedy algorithm widely used in compressed sensing.In this paper,by exploiting the Wielandt inequality and some properties of orthogonal projection matrix,we ob...Orthogonal matching pursuit(OMP)algorithm is a classical greedy algorithm widely used in compressed sensing.In this paper,by exploiting the Wielandt inequality and some properties of orthogonal projection matrix,we obtained a new number of iterations required for the OMP algorithm to perform exact recovery of sparse signals,which improves significantly upon the latest results as we know.展开更多
提出一种压缩感知正交匹配追踪(CS-OMP)超谐波测量新算法,即运用压缩感知理论,通过引入插值系数,基于离散傅里叶变换(DFT)系数向量和狄利克雷核矩阵,构建了高频率分辨率的压缩感知模型,并基于正交匹配追踪算法,在不增加被测数据观...提出一种压缩感知正交匹配追踪(CS-OMP)超谐波测量新算法,即运用压缩感知理论,通过引入插值系数,基于离散傅里叶变换(DFT)系数向量和狄利克雷核矩阵,构建了高频率分辨率的压缩感知模型,并基于正交匹配追踪算法,在不增加被测数据观测时间前提下,将超谐波测量的频率分辨率提高了一个数量级。数值仿真分析以及两种非线性负荷的实测数据验证的结果表明,该算法可将测得数据频率分辨率由2 k Hz细化为200 Hz,能实现对被测信号中超谐波频率成分的精确定位,也可准确求解出其幅值信息,从而有效地弥补了DFT算法存在的观测时间与频率分辨率互相限制的固有缺陷,在更准确测量超谐波方面展现出良好前景。展开更多
Orthogonal matching pursuit(OMP for short)algorithm is a popular method of sparse signal recovery in compressed sensing.This paper applies OMP to the sparse polynomial reconstruction problem.Distinguishing from classi...Orthogonal matching pursuit(OMP for short)algorithm is a popular method of sparse signal recovery in compressed sensing.This paper applies OMP to the sparse polynomial reconstruction problem.Distinguishing from classical research methods using mutual coherence or restricted isometry property of the measurement matrix,the recovery guarantee and the success probability of OMP are obtained directly by the greedy selection ratio and the probability theory.The results show that the failure probability of OMP given in this paper is exponential small with respect to the number of sampling points.In addition,the recovery guarantee of OMP obtained through classical methods is lager than that of ℓ_(1)-minimization whatever the sparsity of sparse polynomials is,while the recovery guarantee given in this paper is roughly the same as that of ℓ_(1)-minimization when the sparsity is less than 93.Finally,the numerical experiments verify the availability of the theoretical results.展开更多
As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algor...As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.展开更多
基金This study was supported by the Yangtze University Innovation and Entrepreneurship Course Construction Project of“Mobile Internet Entrepreneurship”.
文摘Compressive sensing theory mainly includes the sparsely of signal processing,the structure of the measurement matrix and reconstruction algorithm.Reconstruction algorithm is the core content of CS theory,that is,through the low dimensional sparse signal recovers the original signal accurately.This thesis based on the theory of CS to study further on seismic data reconstruction algorithm.We select orthogonal matching pursuit algorithm as a base reconstruction algorithm.Then do the specific research for the implementation principle,the structure of the algorithm of AOMP and make the signal simulation at the same time.In view of the OMP algorithm reconstruction speed is slow and the problems need to be a given number of iterations,which developed an improved scheme.We combine the optimized OMP algorithm of constraint the optimal matching of item selection strategy,the backwards gradient projection ideas of adaptive variance step gradient projection method and the original algorithm to improve it.Simulation experiments show that improved OMP algorithm is superior to traditional OMP algorithm of improvement in the reconstruction time and effect under the same condition.This paper introduces CS and most mature compressive sensing algorithm at present orthogonal matching pursuit algorithm.Through the program design realize basic orthogonal matching pursuit algorithms,and design realize basic orthogonal matching pursuit algorithm of one-dimensional,two-dimensional signal processing simulation.
基金The National Natural Science Foundation of China under contract No.11704225the Shandong Provincial Natural Science Foundation under contract No.ZR2016AQ23+3 种基金the State Key Laboratory of Acoustics,Chinese Academy of Sciences under contract No.SKLA201902the National Key Research and Development Program of China contract No.2018YFC1405900the SDUST Research Fund under contract No.2019TDJH103the Talent Introduction Plan for Youth Innovation Team in Universities of Shandong Province(Innovation Team of Satellite Positioning and Navigation)
文摘The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realistic solutions.The empirical orthonormal function(EOF)is capable of a very large compression of the data set.In this paper,the non-linear response of the sound pressure to SSP is linearized using a first order Taylor expansion,and the pressure is expanded in a sparse domain using EOFs.Since the parameters of the inverse model are sparse,compressive sensing(CS)can help solve such underdetermined problems accurately,efficiently,and with enhanced resolution.Here,the orthogonal matching pursuit(OMP)is used to estimate range-independent acoustic SSPs using the simulated acoustic field.The superior resolution of OMP is demonstrated with the SSP data from the South China Sea experiment.By shortening the duration of the training set,the temporal correlation between EOF and test sets is enhanced,and the accuracy of sound velocity inversion is improved.The SSP estimation error versus depth is calculated,and the 99%confidence interval of error is within±0.6 m/s.The 82%of mean absolute error(MAE)is less than 1 m/s.It is shown that SSPs can be well estimated using OMP.
基金Supported by the National Natural Science Foundation of China(60119944,61331021)the National Key Basic Research Program Founded by MOST(2010C B731902)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT1005)Beijing Higher Education Young Elite Teacher Project(YET P1159)
文摘The performance guarantees of generalized orthogonal matching pursuit( gOMP) are considered in the framework of mutual coherence. The gOMP algorithmis an extension of the well-known OMP greed algorithmfor compressed sensing. It identifies multiple N indices per iteration to reconstruct sparse signals.The gOMP with N≥2 can perfectly reconstruct any K-sparse signals frommeasurement y = Φx if K 〈1/N(1/μ-1) +1,where μ is coherence parameter of measurement matrix Φ. Furthermore,the performance of the gOMP in the case of y = Φx + e with bounded noise ‖e‖2≤ε is analyzed and the sufficient condition ensuring identification of correct indices of sparse signals via the gOMP is derived,i. e.,K 〈1/N(1/μ-1)+1-(2ε/Nμxmin) ,where x min denotes the minimummagnitude of the nonzero elements of x. Similarly,the sufficient condition in the case of G aussian noise is also given.
文摘In an underdetermined system,compressive sensing can be used to recover the support vector.Greedy algorithms will recover the support vector indices in an iterative manner.Generalized Orthogonal Matching Pursuit(GOMP)is the generalized form of the Orthogonal Matching Pursuit(OMP)algorithm where a number of indices selected per iteration will be greater than or equal to 1.To recover the support vector of unknown signal‘x’from the compressed measurements,the restricted isometric property should be satisfied as a sufficient condition.Finding the restricted isometric constant is a non-deterministic polynomial-time hardness problem due to that the coherence of the sensing matrix can be used to derive the sufficient condition for support recovery.In this paper a sufficient condition based on the coherence parameter to recover the support vector indices of an unknown sparse signal‘x’using GOMP has been derived.The derived sufficient condition will recover support vectors of P-sparse signal within‘P’iterations.The recovery guarantee for GOMP is less restrictive,and applies to OMP when the number of selection elements equals one.Simulation shows the superior performance of the GOMP algorithm compared with other greedy algorithms.
文摘针对工业环境中随机冲击干扰下滚动轴承微弱故障特征提取难题,提出一种基于自适应短时维纳滤波(Adaptive Short Time Wiener Filtering,ASTWF)和改进正交匹配追踪(Orthogonal Matching Pursuit,OMP)的滚动轴承故障特征提取方法。该方法首先采用包络峭度和随余比(Random Shocks and Margin Ratio,RMR)作为联合判据,界定窗长界限并自适应确定STWF最优窗长参数,进而将随机冲击干扰从测试信号中分离出来;然后,利用立方包络自相关谱估计信号中周期频率,构造周期原子库,降低匹配原子冗余度;最后,利用相似性理论优化匹配追踪迭代终止条件,并结合周期原子库,实现弱故障冲击特征快速、准确提取。根据仿真信号和通过变速箱下线检测所得工程数据,可验证所提出方法可有效识别随机冲击干扰下的滚动轴承微弱故障特征。对比最小熵形态反卷积(Minimum Entropy Morphological Deconvolution,MEMD)方法对于随机冲击干扰下滚动轴承微弱故障特征提取效果,发现所提出方法具有更好的故障特征提取能力;与经典OMP方法相比,所提出改进OMP方法信号重构速度提升66%。
基金The authors are very grateful to the anonymous referees for their valuable comments and suggestions. We want to thank Mr. Liang Chen at Hunan University for many useful comments. This work was supported by the National Natural Science Foundation of China under Grant 11271117.
文摘This paper aims to investigate sufficient conditions for the recovery of sparse signals via the orthogonal matching pursuit (OMP) algorithm. In the noiseless case, we present a novel sufficient condition for the exact recovery of all k-sparse signals by the OMP algorithm, and demonstrate that this condition is sharp. In the noisy case, a sufficient condition for recovering the support of k-sparse signal is also presented. Generally, the computation for the restricted isometry constant (RIC) in these sufficient conditions is typically difficult, therefore we provide a new condition which is not only computable but also sufficient for the exact recovery of all k-sparse signals.
基金supported by National Natural Science Foundation of China(Grant Nos.11271060,U0935004,U1135003,11071031,11290143 and 11101096)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,National Engineering Research Center of Digital Lifethe Guangdong Natural Science Foundation(Grant No.S2012010010376)
文摘Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the OMP algorithm under the restricted isometry property (RIP) is presented. It is shown that 5K+V/KOK,1 〈 1 is sufficient for the OMP algorithm to recover exactly the support of arbitrary /(-sparse signal if its nonzero components are large enough for both 12 bounded and lz~ bounded noises.
基金supported by the Science Foundation of Guangdong University of Finance & Economics(Grant No.13GJPY11002)National Natural Science Foundation of China(Grant Nos.11071031,11271060,11290143,U0935004 and U1135003)+1 种基金the Guangdong Natural Science Foundation(Grant No.S2012010010376)the Guangdong University and Colleges Technology Innovation Projects(Grant No.2012KJCX0048)
文摘Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance of OMMP under the restricted isometry property(RIP)is presented.We demonstrate that OMMP can exactly recover any K-sparse signal from fewer observations y=φx,provided that the sampling matrixφsatisfiesδKN-N+1+√K/NθKN-N+1,N〈1.Moreover,the performance of OMMP for support recovery from noisy observations is also discussed.It is shown that,for l_2 bounded and l_∞bounded noisy cases,OMMP can recover the true support of any K-sparse signal under conditions on the restricted isometry property of the sampling matrixφand the minimum magnitude of the nonzero components of the signal.
基金support from the National Natural Science Foundation of China No.11971204Natural Science Foundation of Jiangsu Province of China No.BK20200108the Zhongwu Youth Innovative Talent Program of Jiangsu University of Technology.
文摘Orthogonal matching pursuit(OMP)algorithm is a classical greedy algorithm widely used in compressed sensing.In this paper,by exploiting the Wielandt inequality and some properties of orthogonal projection matrix,we obtained a new number of iterations required for the OMP algorithm to perform exact recovery of sparse signals,which improves significantly upon the latest results as we know.
文摘提出一种压缩感知正交匹配追踪(CS-OMP)超谐波测量新算法,即运用压缩感知理论,通过引入插值系数,基于离散傅里叶变换(DFT)系数向量和狄利克雷核矩阵,构建了高频率分辨率的压缩感知模型,并基于正交匹配追踪算法,在不增加被测数据观测时间前提下,将超谐波测量的频率分辨率提高了一个数量级。数值仿真分析以及两种非线性负荷的实测数据验证的结果表明,该算法可将测得数据频率分辨率由2 k Hz细化为200 Hz,能实现对被测信号中超谐波频率成分的精确定位,也可准确求解出其幅值信息,从而有效地弥补了DFT算法存在的观测时间与频率分辨率互相限制的固有缺陷,在更准确测量超谐波方面展现出良好前景。
基金supported by the National Natural Science Foundation of China(Grant No.12071019).
文摘Orthogonal matching pursuit(OMP for short)algorithm is a popular method of sparse signal recovery in compressed sensing.This paper applies OMP to the sparse polynomial reconstruction problem.Distinguishing from classical research methods using mutual coherence or restricted isometry property of the measurement matrix,the recovery guarantee and the success probability of OMP are obtained directly by the greedy selection ratio and the probability theory.The results show that the failure probability of OMP given in this paper is exponential small with respect to the number of sampling points.In addition,the recovery guarantee of OMP obtained through classical methods is lager than that of ℓ_(1)-minimization whatever the sparsity of sparse polynomials is,while the recovery guarantee given in this paper is roughly the same as that of ℓ_(1)-minimization when the sparsity is less than 93.Finally,the numerical experiments verify the availability of the theoretical results.
基金supported by the Fundamental Research Funds for the Central Universities(DL13BB21)the Natural Science Foundation of Heilongjiang Province(C2015054)+1 种基金Heilongjiang Province Technology Foundation for Selected Osverseas ChineseNatural Science Foundation of Heilongjiang Province(F2015036)
文摘As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.